【剑指offer】 --- 和为S的两个数

本文介绍了一种在递增排序数组中查找两数和为特定值S的算法,通过双指针从两端向中间逼近的方法,寻找乘积最小的数对,适用于有多个解的情况。

题目描述


        输入一个递增排序的数组和一个数字S,在数组中查找两个数,使得他们的和正好是S,如果有多对数字的和等于S,输出两个数的乘积最小的。


思路

        由于是一个递增数组,所以我们可以采取两边向中间逼近的方式解决这个问题;

        ①:使用这个指针,一个i,一个j,i指向头,j指向尾;

        ②:如果a[i]+a[j]>S,那么就j--;如果a[i]+a[j]<S,那么就i++;如果a[i]+a[j]=S,保存a[i],a[j];

        ③:因为这个题是输出乘积最小的,在递增数组中,相距越远成绩越小,直接break即可;

代码实现

 public ArrayList<Integer> FindNumbersWithSum(int [] array,int sum) {
        if(array.length<2){
            return list;
        }
        ArrayList<Integer> list = new ArrayList<Integer>();
        int i = 0;
        int j = array.length-1;
        while(i<j){
            //第一次找到就break,此时乘积最小
            if(array[i]+array[j] == sum){
                list.add(array[i]);
                list.add(array[j]);
                break;
            }
            else if(array[i]+array[j]>sum){
                j--;
            }else{
                i++;
            }
        }
        return list;
    }

 

【电动汽车充电站有序充电调度的分散式优化】基于蒙特卡诺拉格朗日的电动汽车优化调度(分时电价调度)(Matlab代码实现)内容概要:本文介绍了基于蒙特卡洛拉格朗日方法的电动汽车充电站有序充电调度优化方案,重点在于采用分散式优化策略应对分时电价机制下的充电需求管理。通过构建数学模型,结合不确定性因素如用户充电行为电网负荷波动,利用蒙特卡洛模拟生成大量场景,并运用拉格朗日松弛法对复杂问题进行分解求解,从而实现全局最优或近似最优的充电调度计划。该方法有效降低了电网峰值负荷压力,提升了充电站运营效率与经济效益,同时兼顾用户充电便利性。 适合人群:具备一定电力系统、优化算法Matlab编程基础的高校研究生、科研人员及从事智能电网、电动汽车相关领域的工程技术人员。 使用场景及目标:①应用于电动汽车充电站的日常运营管理,优化充电负荷分布;②服务于城市智能交通系统规划,提升电网与交通系统的协同水平;③作为学术研究案例,用于验证分散式优化算法在复杂能源系统中的有效性。 阅读建议:建议读者结合Matlab代码实现部分,深入理解蒙特卡洛模拟与拉格朗日松弛法的具体实施步骤,重点关注场景生成、约束处理与迭代收敛过程,以便在实际项目中灵活应用与改进。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值