Time Limit: 2 second(s) | Memory Limit: 32 MB |
Given a tree (a connected graph with no cycles), you have to find the farthest nodes in the tree. The edges of the tree are weighted and undirected. That means you have to find two nodes in the tree whose distance is maximum amongst all nodes.
Input
Input starts with an integer T (≤ 10), denoting the number of test cases.
Each case starts with an integer n (2 ≤ n ≤ 30000) denoting the total number of nodes in the tree. The nodes are numbered from 0 to n-1. Each of the next n-1 lines will contain three integers u v w (0 ≤ u, v < n, u ≠ v, 1 ≤ w ≤ 10000) denoting that node u and v are connected by an edge whose weight is w. You can assume that the input will form a valid tree.
Output
For each case, print the case number and the maximum distance.
Sample Input | Output for Sample Input |
2 4 0 1 20 1 2 30 2 3 50 5 0 2 20 2 1 10 0 3 29 0 4 50 | Case 1: 100 Case 2: 80 |
Notes
Dataset is huge, use faster i/o methods.
树的直径的裸题,详解看:点击打开题目
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
#define CLR(a,b) memset(a,b,sizeof(a))
#define MAX 40000
int n;
vector<int> link[MAX+10];
vector<int> va[MAX+10];
bool vis[MAX+10];
int dis[MAX+10];
void init()
{
for(int i=0;i<n;i++)
{
link[i].clear();
va[i].clear();
}
}
int bfs(int x)
{
int ans;
int maxx=0;
memset(vis,false,sizeof(vis));
memset(dis,0,sizeof(dis));
queue<int> q;
dis[x]=0;
q.push(x);
vis[x]=true;
while(!q.empty())
{
int st=q.front();
q.pop();
for(int i=0;i<link[st].size();i++)
{
if(!vis[link[st][i]])
{
q.push(link[st][i]);
dis[link[st][i]]=dis[st]+va[st][i];
if(maxx<dis[link[st][i]])
{
maxx=dis[link[st][i]];
ans=link[st][i];
}
vis[link[st][i]]=true;
}
}
}
return ans;
}
int main()
{
int u,cas=1;
scanf("%d",&u);
while(u--)
{
init();
scanf("%d",&n);
for(int i=1;i<n;i++)
{
int t1,t2,t3;
scanf("%d %d %d",&t1,&t2,&t3);
link[t1].push_back(t2);
va[t1].push_back(t3);
link[t2].push_back(t1);
va[t2].push_back(t3);
}
int z=bfs(0);
int ans=bfs(z);
printf("Case %d: %d\n",cas++,dis[ans]);
}
return 0;
}