再识Spring

本文深入探讨了依赖注入(DI)的概念,它是控制反转(IoC)的一种具体实现,主要聚焦于Spring框架中的应用。文章详细讲解了DI的实现原理,包括如何在Spring中通过XML配置文件创建和管理bean,以及bean的注入方式,如构造器注入、setter注入和property注入。同时,文章还介绍了bean的三种创建方式,并讨论了内部bean与外部bean的区别。

依赖注入 Dependency Injection

什么是依赖注入?简单的说就是给对象的属性赋值,依赖注入是控制反转(ioc)的具体实现
空指针异常 是指 null.属性或者null.方法("“空串.属性或”".方法不会报空指针异常,因为""是一个空的字符串)
创建三个类:UserServlet、UserService、Test
在UserServlet里创建UserService对象,但是不赋值 private UserService userService;
这样在由userService对象调用它的方法是就会报空指针异常(因为userService为null)
依赖指的是UserServlet依赖UserService,注入指的是给UserServlet里的userService赋值,这个赋的值也是一个UserService的实例化对象
怎么赋的值——>通过调用set方法赋值
bean的id是唯一标识符
ref是reference的缩写,引用;property 属性
在applicationContext.xml创建bean

<bean class="com.weilinyang.service.UserService" id="us"></bean>
<bean class="com.weilinyang.web.UserServlet">
	<property name="userService" ref="us"></property>
</bean>
public class UserServlet {
	private UserService userService;
	
	public void success() {
		userService.success();
	}

	public UserService getUserService() {
		return userService;
	}

	public void setUserService(UserService userService) {
		this.userService = userService;
	}
	
	
}
public class UserService {

	public void success() {
		System.out.println("这是UserService里的success方法");
	}

}
public class SpringTest {
	@Test
	public void test() {
		ApplicationContext context = new ClassPathXmlApplicationContext("applicationContext.xml");
		UserServlet userServlet = context.getBean(UserServlet.class);
		userServlet.success();
	}
}

分模块配置

在applicationContxt.xml中导入其他beans.xml

内部bean与外部bean

内部bean:在某个bean标签内部定义的bean对象,内部bean只能某个对象(上一层bean)的某个属性(property )引用

<bean id="userServlet01" class="com.weilinyang.web.UserServlet">
    <!-- 引用的内部bean -->
    <property name="userService" >
      <bean id="userService01" class="com.weilinyang.service.UserService"></bean>
    </property>
 </bean>

外部bean:直接在beans标签内部直接定义的bean对象,外部bean可以被多个bean对象引用

<bean id="user01" class="com.weilinyang.service.UserService"></bean>
  
<bean id="userServlet02" class="com.weilinyang.web.UserServlet">
    <!-- 引用的外部bean -->
   <property name="userService" ref="user01"/>
</bean>

创建对象的三种方式

通过构造器的方式【无参构造器、有参构造器】

public class Animal {
	private Integer id;
	private String name;
	public Animal() {
	  System.out.println("Animal的无参构造器");
	}
	public Animal(Integer id) {
		super();
		this.id = id;
	}
	public Animal(Integer id, String name) {
		super();
		this.id = id;
		this.name = name;
	}
	public Integer getId() {
		return id;
	}
	public void setId(Integer id) {
		this.id = id;
	}
	public String getName() {
		return name;
	}
	public void setName(String name) {
		this.name = name;
	}
	@Override
	public String toString() {
		return "Animal [id=" + id + ", name=" + name + "]";
	}
}
<!--  通过构造器的方式【无参构造器、有参构造器】 -->
  <bean class="com.weilinyang.pojo.Animal">
     <!-- 该标签可以给构造器的参数赋值,name属性指定构造器的参数名,value属性表示给赋的值 -->
     <constructor-arg name="id" value="10"></constructor-arg>
     <constructor-arg name="name" value="张三"></constructor-arg>
  </bean>

通过静态工厂:指的是通过类的静态方法得到的对象!【了解】

public class StaticFactory {
	public static Animal getAnimal() {
		Animal animal = new Animal(12,"猪八戒");
		return animal;
	}
}
<!-- 静态工厂:通过调用类的静态方法得到的对象,factory-method指定调用哪个静态方法,得到的对象是:Aimal对象 -->
  <bean id="animal01" class="com.weilinyang.pojo.StaticFactory" factory-method="getAnimal"></bean>

通过实例工厂:指的是通过类对象的普通方法得到的对象!【了解】

public class InstanceFactory {
	public Animal getAnimal() {
		Animal animal = new Animal(13,"春光灿烂猪八戒");
		return animal;
	}
}
 <!-- 实例工厂:指的是通过类对象的普通方法得到的对象 -->
  <!-- 1.先创建类对象 -->
  <bean id="instanceFactory" class="com.weilinyang.pojo.InstanceFactory"></bean>
  <!-- 2.调用类对象的某个方法得到Animal对象,factory-bean:表示引用哪个对象,factory-method:表示引用哪个方法 -->
  <bean id="animal03" factory-bean="instanceFactory" factory-method="getAnimal"></bean>

给对象属性赋值

按值类型分为
  值注入:普通类型属性赋值的时候,value属性
  引用注入:给引用类型的属性赋值,ref属性
按注入方式分为:
  构造器
  set方法
    property
    p名称空间

毫米波雷达系统工作在毫米波频段,通过发射与接收电磁波并解析回波信号,实现对目标的探测、定位及别。相较于传统雷达技术,该系统在测量精度、环境抗干扰性及气象适应性方面表现更为优越。本研究聚焦于德州仪器开发的IWR1843DCA1000型号毫米波雷达,系统探究其在多模态数据采集与多样化应用场景中的技术路径及创新实践。 IWR1843DCA1000传感器为一款高度集成的毫米波探测设备,采用调频连续波技术与多输入多输出架构,可执行高精度目标测量及成像任务。研究过程中,团队对该设备的性能参数进行了全面评估,并在下列领域展开应用探索: 在数据采集环节,借助专用硬件接口连接雷达传感器,实现原始信号的高效捕获。团队研发了配套的数据采集程序,能够实时记录传感器输出并执行初步信号处理,为后续分析构建数据基础。 通过构建FMCW-MIMO雷达仿真平台,完整复现了雷达波的发射接收流程及信号处理机制。该仿真系统能够模拟目标运动状态及环境变量对雷达波形的影响,为系统性能验证与参数优化提供数字化实验环境。 基于高分辨率测距能力,结合目标检测与轨迹追踪算法,实现对人体运动模式的精确重构。通过点云数据的解析,为行为模式分析与场景理解提供多维信息支撑。 利用雷达回波信号的深度解析,生成表征人体空间分布的热力图像。该技术为复杂环境下的定位问题提供了直观可视化解决方案。 针对精细手势动作的别需求,应用机器学习方法对雷达生成的点云序列进行特征提取与模式分类,建立手势动作的自动别体系。 通过分析人体表面对毫米波信号的反射特性,开发非接触式生理参数监测方法,可有效检测呼吸韵律与心脏搏动频率等生命体征指标,为健康监护领域提供新的技术途径。 本研究的顺利开展,不仅深化了IWR1843DCA1000雷达系统的应用研究层次,同时为毫米波技术在多元领域的拓展应用建立了技术支撑体系。通过实证分析与仿真验证相结合的研究模式,该项目为行业应用提供了可靠的技术参照与实践范例,有力推动了毫米波雷达技术的产业化进程。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
基于直接模拟蒙特卡洛(DSMC)方法的气体分子运动仿真工具,为微观尺度气体动力学研究提供数值计算支持。该计算工具通过统计方法模拟稀薄条件下气体粒子的运动轨迹与碰撞行为,适用于航空航天工程、微纳流体系统等存在低密度气体效应的技术领域。 为便于高等院校理工科专业开展数值仿真教学,开发者采用矩阵实验室(Matlab)平台构建了模块化仿真程序。该程序兼容多个Matlab发行版本(2014a/2019b/2024b),内置标准化案例数据集可实现开箱即用。程序架构采用参数化设计理念,关键物理参数均通过独立变量模块进行管理,支持用户根据具体工况调整分子数密度、边界条件和碰撞模型等参数。 代码实现遵循计算流体力学的最佳实践规范,主要特征包括:采用分层模块架构确保算法逻辑清晰,关键计算单元配备完整的物理注释,变量命名符合工程仿真惯例。这种设计既有利于初学者理解分子动力学模拟原理,也方便研究人员进行算法改进与功能拓展。 该教学工具主要面向计算机科学、电子工程、应用数学等专业的本科教学场景,可用于课程实验、综合设计项目及学位论文等学术活动。通过将抽象的气体动力学理论转化为可视化的数值实验,有效促进学生对统计物理与计算方法的融合理解。在工程应用层面,该工具能胜任微机电系统流场分析、高海拔空气动力学特性研究、纳米孔道气体输运等现象的定量评估。 随着微纳制造与空间技术的发展,稀薄气体仿真在半导体工艺优化、临近空间飞行器设计等前沿领域的应用价值日益凸显。本仿真工具通过提供可靠的数值实验平台,为相关领域的科研创新与人才培养提供技术支持。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值