usaco 4.3 the primes 2010.8.6

该博客介绍了一种求解总和为合法质数的方法,通过枚举斜角和井字,利用二分查找法验证组合是否满足条件。代码实现包括快速排序、质数生成和二分查找等算法,用于解决USACO竞赛中的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

/*
ID: 
PROG: prime3
LANG: C++
*/
 
/** 先求出總和是合法的質數,枚舉斜角 + 井字,剩下的空格用減法,使用binary search查找 **/
 
/**
 Executing...
   Test 1: TEST OK [0.011 secs, 2948 KB]
   Test 2: TEST OK [0.011 secs, 2948 KB]
   Test 3: TEST OK [0.032 secs, 2948 KB]
   Test 4: TEST OK [0.065 secs, 2948 KB]
   Test 5: TEST OK [0.108 secs, 2948 KB]
   Test 6: TEST OK [0.151 secs, 2948 KB]
   Test 7: TEST OK [0.270 secs, 2948 KB]
   Test 8: TEST OK [0.464 secs, 3080 KB]
   Test 9: TEST OK [0.518 secs, 2948 KB]
   Test 10: TEST OK [0.724 secs, 3080 KB]
 
  All tests OK.
**/
 
#include <iostream>
#include <fstream>
#include <vector>
 
using namespace std;
 
inline bool legal_digit_sum(vector<int> &D, unsigned int value, 
                            const int &S)
{
  int multiple[5] = {10000, 1000, 100, 10, 1}, sum = 0;
  for (unsigned int i = 0; i != 5; ++i)
  {
    D[i] = (value / multiple[i]) % 10;
    sum += D[i];
  }
  return(sum == S);
}
 
void quicksort_p(vector< vector<unsigned int> > &A, int left, int right, unsigned int x)
{
  if (left < right)
  {
    int i = right + 1, j = left;
    while (true)
    {
      while (i > j && A[--i][x] > A[left][x])
        ;
      while (i > j && A[++j][x] < A[left][x])
        ;
      swap(A[i][x], A[j][x]);
      if (i == j)
        break;
    }
    swap(A[left][x], A[j][x]);
    quicksort_p(A, left, j - 1, x);
    quicksort_p(A, j + 1, right, x);
  }
}
 
inline void generate_primes(vector< vector<int> > &P, 
                            vector<unsigned int> &PI, 
                            vector< vector<unsigned int> > &PP, 
                            const int &S)
{
  const unsigned int SIZE = 1e5 + 1;
  vector<bool> num(SIZE, true);
  for (unsigned int i = 4; i < SIZE; i += 2)
    num[i] = false;
  for (unsigned int i = 6; i < SIZE; i += 3)
    num[i] = false;
  num[0] = num[1] = false;
  for (unsigned int i = 5; i < SIZE; i += 4)
  {
    if (num[i])
    {
      if ((unsigned int long long)i * i < SIZE)
        for (unsigned int j = (i << 1), k = i * i; k < SIZE; k += j)
          if (num[k])
            num[k] = false;
    }
    i += 2;
    if (i < SIZE && num[i])
    {
      if ((unsigned int long long)i * i < SIZE)
        for (unsigned int j = (i << 1), k = i * i; k < SIZE; k += j)
          if (num[k])
            num[k] = false;
    }
  }
  vector<int> digit(5);
  vector<unsigned int> partial(7);
  /**
   * partial index
   * 0 - index04
   * 1 - index13
   * 2 - index2
   * 3 - index014
   * 4 - index12
   * 5 - index0134
   * 6 - index123
   * **/
  int multiple[5] = {10000, 1000, 100, 10, 1};
  for (unsigned int i = 10000; i != SIZE; ++i)
    if (num[i] && legal_digit_sum(digit, i, S))
    {
      P.push_back(digit);
      PI.push_back(i);
      partial[0] = digit[0] * multiple[0] + digit[4] * multiple[4];
      partial[1] = digit[1] * multiple[1] + digit[3] * multiple[3];
      partial[2] = digit[2] * multiple[2];
      partial[3] = digit[0] * multiple[0] + digit[1] * multiple[1] + digit[4] * multiple[4];
      partial[4] = digit[1] * multiple[1] + digit[2] * multiple[2];
      partial[5] = digit[0] * multiple[0] + digit[1] * multiple[1] + 
                   digit[3] * multiple[3] + digit[4] * multiple[4];
      partial[6] = digit[1] * multiple[1] + digit[2] * multiple[2] + digit[3] * multiple[3];
      PP.push_back(partial);
    }
  for (unsigned int i = 0; i != 7; ++i)
    quicksort_p(PP, 0, PP.size() - 1, i);
}
 
bool binary_search_int(const vector<unsigned int> &PI, 
                   int low, int high, const unsigned int &key)
{
  if (low <= high)
  {
    int mid = (low + high) >> 1;
    if (PI[mid] == key)
      return(true);
    else if (PI[mid] < key)
      return(binary_search_int(PI, mid + 1, high, key));
    else
      return(binary_search_int(PI, low, mid - 1, key));
  }
  return(false);
}
 
bool binary_search_p(const vector< vector<unsigned int> > &PP, 
                   int low, int high, 
                   const unsigned int &key, const unsigned int &x)
{
  if (low <= high)
  {
    int mid = (low + high) >> 1;
    if (PP[mid][x] == key)
      return(true);
    else if (PP[mid][x] < key)
      return(binary_search_p(PP, mid + 1, high, key, x));
    else
      return(binary_search_p(PP, low, mid - 1, key, x));
  }
  return(false);
}
 
inline bool check_diagonal(const vector< vector<int> > &square, 
                           const vector< vector<int> > &P, 
                           const vector< vector<unsigned int> > &PP)
{
  unsigned int p1, multiple[5] = {10000, 1000, 100, 10, 1};
  p1 = square[0][0] * multiple[0] + square[4][0] * multiple[4];
  if (!binary_search_p(PP, 0, PP.size() - 1, p1, 0))
    return(false);
  p1 = square[0][4] * multiple[0] + square[4][4] * multiple[4];
  if (!binary_search_p(PP, 0, PP.size() - 1, p1, 0))
    return(false);
  p1 = square[0][0] * multiple[0] + square[0][4] * multiple[4];
  if (!binary_search_p(PP, 0, PP.size() - 1, p1, 0))
    return(false);
  p1 = square[4][0] * multiple[0] + square[4][4] * multiple[4];
  if (!binary_search_p(PP, 0, PP.size() - 1, p1, 0))
    return(false);
  p1 = square[1][1] * multiple[1] + square[1][3] * multiple[3];
  if (!binary_search_p(PP, 0, PP.size() - 1, p1, 1))
    return(false);
  p1 = square[3][1] * multiple[1] + square[3][3] * multiple[3];
  if (!binary_search_p(PP, 0, PP.size() - 1, p1, 1))
    return(false);
  p1 = square[1][1] * multiple[1] + square[3][1] * multiple[3];
  if (!binary_search_p(PP, 0, PP.size() - 1, p1, 1))
    return(false);
  p1 = square[1][3] * multiple[1] + square[3][3] * multiple[3];
  if (!binary_search_p(PP, 0, PP.size() - 1, p1, 1))
    return(false);
  p1 = square[2][2] * multiple[2];
  if (!binary_search_p(PP, 0, PP.size() - 1, p1, 2))
    return(false);
  return(true);
}
 
inline bool check_row1(const int &sum, 
                       const vector< vector<int> > &square, 
                       const vector< vector<unsigned int> > &PP)
{
  vector<int> p_sum(5, 0);
  p_sum[0] = square[0][0] + square[1][0] + square[4][0];
  p_sum[4] = square[0][4] + square[1][4] + square[4][4];
  p_sum[1] = 0;
  p_sum[2] = square[1][2] + square[2][2];
  p_sum[3] = 0;
  for (unsigned int k = 0; k != 5; ++k)
    if (p_sum[k] > sum)
      return(false);
  unsigned int p1, multiple[5] = {10000, 1000, 100, 10, 1};
  p1 = square[0][0] * multiple[0] + square[1][0] * multiple[1] + square[4][0] * multiple[4];
  if (!binary_search_p(PP, 0, PP.size() - 1, p1, 3))
    return(false);
  p1 = square[0][4] * multiple[0] + square[1][4] * multiple[1] + square[4][4] * multiple[4];
  if (!binary_search_p(PP, 0, PP.size() - 1, p1, 3))
    return(false);
  p1 = square[1][2] * multiple[1] + square[2][2] * multiple[2];
  if (!binary_search_p(PP, 0, PP.size() - 1, p1, 4))
    return(false);
  return(true);
}
 
inline bool check_row3(const int &sum, 
                       const vector< vector<int> > &square, 
                       const vector< vector<unsigned int> > &PP)
{
  vector<int> p_sum(5, 0);
  p_sum[0] = square[0][0] + square[1][0] + square[3][0] + square[4][0];
  p_sum[4] = square[0][4] + square[1][4] + square[3][4] + square[4][4];
  p_sum[1] = 0;
  p_sum[2] = square[1][2] + square[2][2] + square[3][2];
  p_sum[3] = 0;
  for (unsigned int k = 0; k != 5; ++k)
    if (p_sum[k] > sum)
      return(false);
  unsigned int p1, multiple[5] = {10000, 1000, 100, 10, 1};
  p1 = square[0][0] * multiple[0] + square[1][0] * multiple[1] + 
       square[3][0] * multiple[3] + square[4][0] * multiple[4];
  if (!binary_search_p(PP, 0, PP.size() - 1, p1, 5))
    return(false);
  p1 = square[0][4] * multiple[0] + square[1][4] * multiple[1] + 
       square[3][4] * multiple[3] + square[4][4] * multiple[4];
  if (!binary_search_p(PP, 0, PP.size() - 1, p1, 5))
    return(false);
  p1 = square[1][2] * multiple[1] + square[2][2] * multiple[2] + 
       square[3][2] * multiple[3];
  if (!binary_search_p(PP, 0, PP.size() - 1, p1, 6))
    return(false);
  return(true);
}
 
inline bool check_col1(const int &sum, 
                       const vector< vector<int> > &square, 
                       const vector< vector<unsigned int> > &PP)
{
  vector<int> p_sum(5, 0);
  p_sum[0] = square[0][0] + square[0][1] + square[0][4];
  p_sum[4] = square[4][0] + square[4][1] + square[4][4];
  p_sum[1] = 0;
  p_sum[2] = square[2][1] + square[2][2];
  p_sum[3] = 0;
  for (unsigned int k = 0; k != 5; ++k)
    if (p_sum[k] > sum)
      return(false);
  unsigned int p1, multiple[5] = {10000, 1000, 100, 10, 1};
  p1 = square[0][0] * multiple[0] + square[0][1] * multiple[1] + square[0][4] * multiple[4];
  if (!binary_search_p(PP, 0, PP.size() - 1, p1, 3))
    return(false);
  p1 = square[4][0] * multiple[0] + square[4][1] * multiple[1] + square[4][4] * multiple[4];
  if (!binary_search_p(PP, 0, PP.size() - 1, p1, 3))
    return(false);
  p1 = square[2][1] * multiple[1] + square[2][2] * multiple[2];
  if (!binary_search_p(PP, 0, PP.size() - 1, p1, 4))
    return(false);
  return(true);
}
 
inline bool check_col3(const int &sum, 
                       vector< vector<int> > &square, 
                       const vector< vector<int> > &P, 
                       const vector<unsigned int> &PI)
{
  vector<int> p_sum(5, 0);
  p_sum[0] = square[0][0] + square[0][1] + square[0][3] + square[0][4];
  p_sum[4] = square[4][0] + square[4][1] + square[4][3] + square[4][4];
  p_sum[1] = 0;
  p_sum[2] = square[2][1] + square[2][2] + square[2][3];
  p_sum[3] = 0;
  for (unsigned int k = 0; k != 5; ++k)
    if (p_sum[k] > sum)
      return(false);
  square[0][2] = sum - (square[0][0] + square[0][1] + square[0][3] + square[0][4]);
  if (square[0][2] <= 0)
    return(false);
  unsigned int i, p1 = 0, multiple[5] = {10000, 1000, 100, 10, 1};
  for (i = 0; i != 5; ++i)
    p1 += square[0][i] * multiple[i];
  if (!binary_search_int(PI, 0, PI.size() - 1, p1))
    return(false);
  int v1, v2;
  v1 = sum - (square[0][2] + square[1][2] + square[2][2] + square[3][2]);
  v2 = sum - (square[4][0] + square[4][1] + square[4][3] + square[4][4]);
  if (v1 != v2)
    return(false);
  if (v1 <= 0)
    return(false);
  square[4][2] = v1;
  p1 = 0;
  for (i = 0; i != 5; ++i)
    p1 += square[4][i] * multiple[i];
  if (!binary_search_int(PI, 0, PI.size() - 1, p1))
    return(false);
  p1 = 0;
  for (i = 0; i != 5; ++i)
    p1 = p1 * 10 + square[i][2];
  if (!binary_search_int(PI, 0, PI.size() - 1, p1))
    return(false);
  square[2][0] = sum - (square[0][0] + square[1][0] + square[3][0] + square[4][0]);
  if (square[2][0] <= 0)
    return(false);
  p1 = 0;
  for (i = 0; i != 5; ++i)
    p1 = p1 * 10 + square[i][0];
  if (!binary_search_int(PI, 0, PI.size() - 1, p1))
    return(false);
  v1 = sum - (square[2][0] + square[2][1] + square[2][2] + square[2][3]);
  v2 = sum - (square[0][4] + square[1][4] + square[3][4] + square[4][4]);
  if (v1 != v2)
    return(false);
  if (v1 <= 0)
    return(false);
  square[2][4] = v1;
  p1 = 0;
  for (i = 0; i != 5; ++i)
    p1 += square[2][i] * multiple[i];
  if (!binary_search_int(PI, 0, PI.size() - 1, p1))
    return(false);
  p1 = 0;
  for (i = 0; i != 5; ++i)
    p1 = p1 * 10 + square[i][4];
  if (!binary_search_int(PI, 0, PI.size() - 1, p1))
    return(false);
  return(true);
}
 
inline bool operator < (const vector< vector<int> > &s1, 
                        const vector< vector<int> > &s2)
{
  for (unsigned int i = 0; i != 5; ++i)
    for (unsigned int j = 0; j != 5; ++j)
    {
      if (s1[i][j] < s2[i][j])
        return(true);
      else if (s1[i][j] > s2[i][j])
        return(false);
    }
  return(false);
}
 
inline bool operator > (const vector< vector<int> > &s1, 
                        const vector< vector<int> > &s2)
{
  for (unsigned int i = 0; i != 5; ++i)
    for (unsigned int j = 0; j != 5; ++j)
    {
      if (s1[i][j] > s2[i][j])
        return(true);
      else if (s1[i][j] < s2[i][j])
        return(false);
    }
  return(false);
}
 
void quicksort_sol(vector< vector< vector<int> > > &A, int left, int right)
{
  if (left < right)
  {
    int i = right + 1, j = left;
    while (true)
    {
      while (i > j && A[--i] > A[left])
        ;
      while (i > j && A[++j] < A[left])
        ;
      A[i].swap(A[j]);
      if (i == j)
        break;
    }
    A[left].swap(A[j]);
    quicksort_sol(A, left, j - 1);
    quicksort_sol(A, j + 1, right);
  }
}
 
int main()
{
  ofstream fout ("prime3.out");
  ifstream fin ("prime3.in");
  int sum, first_digit;
  fin >> sum >> first_digit;
  if (sum > 45)
  {
    fout << "NONE\n";
    return(0);
  }
  vector<unsigned int> primes_int;
  vector< vector<int> > primes;
  vector< vector<unsigned int> > primes_partial;
  vector< vector< vector<int> > > solution;
  primes.clear(), primes_int.clear(), solution.clear(), primes_partial.clear();
  generate_primes(primes, primes_int, primes_partial, sum);
  unsigned int size = primes.size();
  vector<int> row_s(5, 0);
  vector< vector<int> > square(5, row_s);
  vector<unsigned int> r(6);
  unsigned int i, start;
  for (start = 0; start < size && primes[start][0] < first_digit; ++start)
    ;
  for (r[0] = start; r[0] < size; ++r[0])  // diagonal 1
  {
    if (primes[r[0]][0] > first_digit)
      break;
    for (i = 0; i != 5; ++i)
      square[i][i] = primes[r[0]][i];
    for (r[1] = 0; r[1] < size; ++r[1])  // diagonal 2
    {
      if (!(primes[r[1]][2] == square[2][2]))
        continue;
      for (i = 0; i != 5; ++i)
        square[4 - i][i] = primes[r[1]][i];
      if (!check_diagonal(square, primes, primes_partial))
        continue;
      for (r[2] = 0; r[2] < size; ++r[2])  // row 1
      {
        if (!(primes[r[2]][1] == square[1][1] && primes[r[2]][3] == square[1][3]))
          continue;
        square[1] = primes[r[2]];
        if (!check_row1(sum, square, primes_partial))
          continue;
        for (r[3] = 0; r[3] < size; ++r[3])  // row 3
        {
          if (!(primes[r[3]][1] == square[3][1] && primes[r[3]][3] == square[3][3]))
            continue;
          square[3] = primes[r[3]];
          if (!check_row3(sum, square, primes_partial))
            continue;
          for (r[4] = 0; r[4] < size; ++r[4])  // col 1
          {
            if (!(primes[r[4]][1] == square[1][1] && primes[r[4]][3] == square[3][1]))
              continue;
            for (i = 0; i != 5; ++i)
              square[i][1] = primes[r[4]][i];
            if (!check_col1(sum, square, primes_partial))
              continue;
            for (r[5] = 0; r[5] < size; ++r[5])  // col 3
            {
              if (!(primes[r[5]][1] == square[1][3] && primes[r[5]][3] == square[3][3]))
                continue;
              for (i = 0; i != 5; ++i)
                square[i][3] = primes[r[5]][i];
              if (check_col3(sum, square, primes, primes_int))
                solution.push_back(square);
            }
          }
        }
      }
    }
  }
  if (!solution.size())
    fout << "NONE\n";
  else
  {
    quicksort_sol(solution, 0, solution.size() - 1);
    for (unsigned int i = 0; i != solution.size(); ++i)
    {
      if (i)
       fout << "\n";
      for (unsigned int j = 0; j != 5; ++j)
      {
        for (unsigned int k = 0; k != 5; ++k)
          fout << solution[i][j][k];
        fout << "\n";
      }
    }
  }
  return(0);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值