Visualizing the data
pos = find(y==1); neg = find(y == 0);
plot(X(pos, 1), X(pos, 2), 'k+','LineWidth', 2, ...
'MarkerSize', 7);
plot(X(neg, 1), X(neg, 2), 'ko', 'MarkerFaceColor', 'y', ...
'MarkerSize', 7);
Warmup exercise: sigmoid function
g = 1 ./ (1 + exp(-z))
Cost function and gradient
J = sum( -y .* log(sigmoid(X*theta)) - (1 - y) .* log(1 - sigmoid(X*theta))) / m;
for i = 1:size(theta)
grad(i) = sum((sigmoid(X*theta) - y) .* X(:,i)) / m;
end;
Predict
p = zeros(m, 1);
for i = 1:m
tmp = sigmoid(X(i,:)*theta);
if tmp < 0.5
p(i) = 0;
else
p(i) = 1;
end;
end;
Regularized logistic regression
m = length(y);
J = 0;
grad = zeros(size(theta));
J = sum( -y .* log(sigmoid(X*theta)) - (1 - y) .* log(1 - sigmoid(X*theta))) / m + theta(2:end)' * theta(2:end) * lambda / m / 2;
for i = 1:size(theta)
grad(i) = sum((sigmoid(X*theta) - y) .* X(:,i)) / m;
if i > 1
grad(i) = grad(i) + lambda / m *theta(i);
end
end

本文介绍了如何使用逻辑回归对数据进行分类,并展示了如何通过可视化来理解数据分布。文中提供了具体的MATLAB代码,包括数据点的可视化、sigmoid函数的实现、代价函数及梯度的计算方法,还涉及正则化的逻辑回归。
1632

被折叠的 条评论
为什么被折叠?



