贪心算法

贪心算法

一、基本概念:

 

     所谓贪心算法是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。

     贪心算法没有固定的算法框架,算法设计的关键是贪心策略的选择。必须注意的是,贪心算法不是对所有问题都能得到整体最优解,选择的贪心策略必须具备无后效性,即某个状态以后的过程不会影响以前的状态,只与当前状态有关。

    所以对所采用的贪心策略一定要仔细分析其是否满足无后效性。

 

二、贪心算法的基本思路:

    1.建立数学模型来描述问题。

    2.把求解的问题分成若干个子问题。

    3.对每一子问题求解,得到子问题的局部最优解。

    4.把子问题的解局部最优解合成原来解问题的一个解。

 

三、贪心算法适用的问题

      贪心策略适用的前提是:局部最优策略能导致产生全局最优解。

    实际上,贪心算法适用的情况很少。一般,对一个问题分析是否适用于贪心算法,可以先选择该问题下的几个实际数据进行分析,就可做出判断。

 

四、贪心算法的实现框架

    从问题的某一初始解出发;

    while (能朝给定总目标前进一步)

    { 

          利用可行的决策,求出可行解的一个解元素;

    }

    由所有解元素组合成问题的一个可行解;

  

五、贪心策略的选择

     因为用贪心算法只能通过解局部最优解的策略来达到全局最优解,因此,一定要注意判断问题是否适合采用贪心算法策略,找到的解是否一定是问题的最优解。

 

六、例题分析

    [找零钱问题]假如老板要找给我99分钱,他有上面的面值分别为25,10,5,1的硬币数,为了找给我最少的硬币数,那么他是不是该这样找呢,先看看该找多少个25分的,诶99/25=3,好像是3个,要是4个的话,我们还得再给老板一个1分的,我不干,那么老板只能给我3个25分的拉,由于还少给我24,所以还得给我2个10分的和4个1分。

@Test
public void testGiveMoney() {
    //找零钱
    int[] m = {25, 10, 5, 1};
    int target = 99;                                           //target表示总钱数
    int[] results = giveMoney(m, target);        //result表示每个面值的总个数,由giveMoney方法的num传给
    System.out.println(target + "的找钱方案:");
    for (int i = 0; i < results.length; i++) {
        System.out.println(results[i] + "枚" + m[i] + "面值");
    }
}

public int[] giveMoney(int[] m, int target) {
    int k = m.length;
    int[] num = new int[k];
    for (int i = 0; i < k; i++) {
        num[i] = target / m[i];
        target = target % m[i];
    }
    return num;
}

 

贪心算法所作的选择可以依赖于以往所作过的选择,但决不依赖于将来的选择,也不依赖于子问题的解,因此贪心算法与其他算法相比具有一定的速度优势。如果一个问题可以同时用几种方法解决,贪心算法应该是最好的选择之一。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值