什么是 Stack Overflow,什么情况下会造成 Stack Overflow

本文详细解析了递归深度的概念,指出递归深度是递归函数在内存中同时存在的最大次数,如阶乘函数的递归深度为O(n),而尾递归则是一种优化技巧,可以使递归深度为O(1),极大优化了栈空间的利用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转载于

https://www.jiuzhang.com/tutorial/algorithm/444

什么是递归深度

递归深度就是递归函数在内存中,同时存在的最大次数
例如下面这段求阶乘的代码:

int factorial(int n) {
    if (n == 1) {
        return 1;
    }
    return factorial(n - 1) * n;
}

n=100时,递归深度就是100。一般来说,我们更关心递归深度的数量级,在该阶乘函数中递归深度是O(n)O(n),而在二分查找中,递归深度是O(log(n))O(log(n))。在后面的教程中,我们还会学到基于递归的快速排序、归并排序、以及平衡二叉树的遍历,这些的递归深度都是(O(log(n))(O(log(n))。注意,此处说的是递归深度,而并非时间复杂度。

太深的递归会内存溢出

首先,函数本身也是在内存中占空间的,主要用于存储传递的参数,以及调用代码的返回地址。
函数的调用,会在内存的栈空间中开辟新空间,来存放子函数。递归函数更是会不断占用栈空间,例如该阶乘函数,展开到最后n=1时,内存中会存在factorial(100), factorial(99), factorial(98) ... factorial(1)这些函数,它们从栈底向栈顶方向不断扩展。
当递归过深时,栈空间会被耗尽,这时就无法开辟新的函数,会报出stack overflow这样的错误。
所以,在考虑空间复杂度时,递归函数的深度也是要考虑进去的

Follow up:
尾递归:若递归函数中,递归调用是整个函数体中最后的语句,且它的返回值不属于表达式的一部分时,这个递归调用就是尾递归。(上例factorial函数满足前者,但不满足后者,故不是尾递归函数)
尾递归函数的特点是:在递归展开后该函数不再做任何操作,这意味着该函数可以不等子函数执行完,自己直接销毁,这样就不再占用内存。一个递归深度O(n)O(n)的尾递归函数,可以做到只占用O(1)O(1)空间。这极大的优化了栈空间的利用。
但要注意,这种内存优化是由编译器决定是否要采取的,不过大多数现代的编译器会利用这种特点自动生成优化的代码。在实际工作当中,尽量写尾递归函数,是很好的习惯。
而在算法题当中,计算空间复杂度时,建议还是老老实实地算空间复杂度了,尾递归这种优化提一下也是可以,但别太在意。

 

认识你是我们的缘分,同学,等等,记得关注我。

 

微信扫一扫
关注该公众号

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值