分析与解法
拿到这样一个问题,我们往往会从最简单的情况入手,因为所有的小数都可以分解成一个整数和一个纯小数之和,不妨只考虑大于0,小于1的纯小数,且暂时不考虑分子和分母的约分,先设法将其表示为分数形式,然后再进行约分。题目中输入的小数,要么为有限小数X=0.a 1 a 2…an,要么为无限循环小数X=0.a 1 a 2…an(b1b2…bm),X表示式中的字母a 1 a 2…an,b1b2…bm都是0~9的数字,括号部分(b1b2…bm)表示循环节,我们需要处理的就是以上两种情况。
对于有限小数X=0.a 1 a 2…an来说,这个问题比较简单,X就等于(a 1 a 2…an)/10n。
对于无限循环小数X=0.a 1 a 2…an(b1b2…bm)来说,其复杂部分在于小数点后同时有非循环部分和循环部分,我们可以做如下的转换:
X = 0.a 1 a 2…an(b1b2…bm)
10n* X= a 1 a 2…an.(b1b2…bm)
10n* X= a 1 a 2…an+0.(b1b2…bm)
X =(a 1 a 2…an+0.(b1b2…bm))/10n
对于整数部分a 1 a 2…an,不需要做额外处理,只需要把小数部分转化为分数形式再加上这个整数即可。对于后面的无限循环部分,可以采用如下方式进行处理:
令Y=0. b1b2…bm,那么
10 m *Y=b1b2…bm.(b1b2…bm)
10 m *Y=b1b2…bm+0.(b1b2…bm)
10 m *Y-Y=b1b2…bm
Y= b1b2…bm /( 10m -1)
将Y代入前面的X的等式可得:
X =(a 1 a 2…an+Y)/10n
=(a 1 a 2…an+ b1b2…bm/( 10m -1))/10n
=((a 1 a 2…an)*( 10m -1)+ (b1b2…bm))/(( 10m -1)*10n)
至此,便可以得到任意一个有限小数或无限循环小数的分数表示,但是此时分母未必是最简的,接下来的任务就是让分母最小,即对分子和分母进行约分,这个相对比较简单。对于任意一个分数A/B,可以简化为(A /Gcd(A, B))/(B /Gcd(A, B)),其中Gcd函数为求A和B的最大公约数,这就涉及本书中的算法(2.7节“最大公约数问题”),其中有很巧妙的解法,请读者阅读具体的章节,这里就不再赘述。
综上所述,先求得小数的分数表示方式,再对其分子分母进行约分,便能够得到分母最小的分数表现形式。
例如,对于小数0.3(33),根据上述方法,可以转化为分数:
0.3(33)
=(3 *(102-1)+ 33)/((102-1)*10)
=(3*99+33)/990
= 1 / 3
对于小数0. 285714(285714),我们也可以算出:
0. 285714(285714)
= (285714 *(106-1) + 285714) / ((106-1)*106)
= (285714*999999 +285714) / 999999000000
= 285714 / 999999
= 2/7
相关资源:
《编程之美》编辑部 | 《编程之美》豆瓣 | 《编程之美》互动网购买 | 作者Blog
小数转分数方法
683





