Python科研绘图--Task03

本文详细介绍了Seaborn库中各种图类型的应用,如关系图、散点图、数据分布图和回归模型图,以及如何使用FacetGrid和PairGrid进行多变量可视化。同时涵盖了绘图风格、颜色主题和元素缩放的设置方法。

目录

图类型

关系类型图

散点图的例子

数据分布型图

rugplot例子

分类数据型图 

​编辑回归模型分析型图

多子图网格型图

FacetGrid() 函数

 PairGrid() 函数

 绘图风格、颜色主题和绘图元素缩放比例

绘图风格

颜色主题

 绘图元素缩放比列


图类型

关系类型图
数据集变量间的相互关系和相互依赖的程度都可以通过统计分析变量间的相关性获知。
散点图的例子
import matplotlib.pyplot as plt
import numpy as np

# 生成随机数据
np.random.seed(0)
x = np.random.randn(100)
y = x * np.random.randn(100)

# 创建散点图
plt.scatter(x, y, c='blue', alpha=0.5, edgecolors='none', s=50)

# 添加网格
plt.grid(True, linestyle='--', alpha=0.5)

# 添加标题和坐标轴标签
plt.title('精致的散点图')
plt.xlabel('X轴')
plt.ylabel('Y轴')

plt.show()

数据分布型图
在对数据进行分析或建模之前,我们需要先了解数据的分布情况,以及数据的覆盖范围、中心趋势、异常值等基本情况。
rugplot例子
import seaborn as sns
import matplotlib.pyplot as plt

# 示例数据
data = sns.load_dataset('tips')['total_bill']

# 创建rugplot
sns.rugplot(data, height=0.5, color='blue')

plt.title('Rugplot 示例')
plt.xlabel('Total Bill')
plt.show()

分类数据型图 

回归模型分析型图
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值