最大子数组问题
问题:求解一个数组中最大之和的连续子数组
思路:分治策略求解算法,算法复杂度
O
(
n
l
g
n
)
O(nlgn)
O(nlgn)
分析:数组
A
[
l
o
w
,
h
i
g
h
]
A[low, high]
A[low,high](假设mid是数组A的中间位置)的任何连续子数组
A
[
i
.
.
j
]
A[i..j]
A[i..j]所处的位置必然是以下三种情况之一:
- 完全位于子数组 A [ l o w . . m i d ] A[low..mid] A[low..mid]中,因此 l o w ≤ i ≤ j ≤ m i d low \le i \le j \le mid low≤i≤j≤mid
- 完全位于子数组 A [ m i d + 1.. h i g h ] A[mid+1..high] A[mid+1..high]中,因此 m i d ≤ i ≤ j ≤ h i g h mid \le i \le j \le high mid≤i≤j≤high
- 跨越了中点,因此
l
o
w
≤
i
≤
m
i
d
<
j
≤
h
i
g
h
low \le i \le mid <j \le high
low≤i≤mid<j≤high
我们可以递归的求解 A [ l o w . . m i d ] A[low..mid] A[low..mid]和 A [ m i d + 1.. h i g h ] A[mid+1..high] A[mid+1..high]的最大子数组问题,因为这两个子问题仍然是最大子数组问题,剩下的全部工作是先需要寻找跨越中点的最大子数组问题,然后在三种情况中选取和最大者。
任何跨越中点的子数组都由两个子数组 A [ i . . m i d ] A[i..mid] A[i..mid]和 A [ m i d + 1.. j ] A[mid+1..j] A[mid+1..j]组成,其中 l o w ≤ i ≤ m i d low \le i \le mid low≤i≤mid 且 m i d < j ≤ h i g h mid < j \le high mid<j≤high,因此我们只需要找出 A [ i . . m i d ] A[i..mid] A[i..mid]和 A [ m i d + 1.. j ] A[mid+1..j] A[mid+1..j]的最大子数组,然后将其合并即可。
python实现如下:
# -*-coding:utf8 -*-
import sys
#存放初始化中的最小值
mins = -sys.maxsize
#跨越中点的子数组求解
def find_max_cross_subarray(A, low, mid, high):
left_sum = mins
sums = 0
# [low, mid]区间,low-1才可以取到low值
for i in range(mid, low-1, -1):
sums+=A[i]
if sums > left_sum:
left_sum = sums
max_left = i
right_sum = mins
sums = 0
#[mid+1, high]区间,high+1才可以取到high值
for i in range(mid+1, high+1):
sums+=A[i]
if sums > right_sum:
right_sum = sums
max_right = i
return (max_left, max_right, left_sum + right_sum)
def find_max_subarray(A, low, high):
if low == high:
return (low, high, A[low])
else:
mid = (low+high) / 2
mid = int(mid)
(left_low, left_high, left_sum) = find_max_subarray(A, low, mid)
(right_low, right_high, right_sum) = find_max_subarray(A, mid+1, high)
(cross_low, cross_high, cross_sum) = find_max_cross_subarray(A, low,mid, high)
#在三种情况中选取和最大者,返回最大子数组索引值以及子数组和
if left_sum >= right_sum and left_sum >= cross_sum:
return (left_low, left_high, left_sum)
elif right_sum >= left_sum and right_sum >= cross_sum:
return (right_low, right_high, right_sum)
else:
return (cross_low, cross_high, cross_sum)
if __name__ == "__main__":
A = [13, -3, -25, 20, -3, -16, -23, 18, 20, -7, 12, -5, -22, 15, -4, 7]
low, high, sums = find_max_subarray(A,0,len(A)-1)
print(A)
print(A[low:high+1])
print(str(low)+'\t'+str(high)+'\t'+str(sums))