Least Common Multiple
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 59749 Accepted Submission(s): 22797
Problem Description
The least common multiple (LCM) of a set of positive integers is the smallest positive integer which is divisible by all the numbers in the set. For example, the LCM of 5, 7 and 15 is 105.
Input
Input will consist of multiple problem instances. The first line of the input will contain a single integer indicating the number of problem instances. Each instance will consist of a single line of the form m n1 n2 n3 ... nm where m is the number of integers in the set and n1 ... nm are the integers. All integers will be positive and lie within the range of a 32-bit integer.
Output
For each problem instance, output a single line containing the corresponding LCM. All results will lie in the range of a 32-bit integer.
Sample Input
2
3 5 7 15
6 4 10296 936 1287 792 1
Sample Output
105
10296
//例2,3,5,7;
//先求出2,3最小公倍数6,
//再求6,5最小公倍数30
//再求30,7的最小公倍数210就是结果
#include<stdio.h>
#include<string.h>
#include<vector>
#include<algorithm>
using namespace std;
int gcd(int a,int b){//最大公约数
if(b==0) return a;
else return gcd(b,a%b);
}
int main()
{
int n;
scanf("%d",&n);
while(n--)
{
vector<long long>v;
long long a,m;
scanf("%lld",&m);
for(int i=0;i<m;i++)
{
scanf("%lld",&a);
v.push_back(a);
}
sort(v.begin(),v.end());
long long sum=v[0];
for(int i=1;i<v.size();i++)
{
sum=(sum*v[i]/gcd(v[i],sum));//两两求出最小公倍数
}
printf("%lld\n",sum);//最终结果
}
}