GSL演变函数

本文详细介绍了如何使用gsl库中的ODE求解器来解决常微分方程的问题,并提供了具体的示例代码,包括如何定义函数、雅克比矩阵、配置参数等关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#include <stdio.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_odeiv.h>

#pragma comment(lib, "libgsl_d.lib")
#pragma comment(lib, "libgslcblas_d.lib")

int
func (double t, const double y[], double f[],
      void *params)
{
  double mu = *(double *)params;
  f[0] = y[1];
  f[1] = -y[0] - mu*y[1]*(y[0]*y[0] - 1);
  return GSL_SUCCESS;
}

int
jac (double t, const double y[], double *dfdy, 
     double dfdt[], void *params)
{
  double mu = *(double *)params;
  gsl_matrix_view dfdy_mat 
    = gsl_matrix_view_array (dfdy, 2, 2);
  gsl_matrix * m = &dfdy_mat.matrix; 
  gsl_matrix_set (m, 0, 0, 0.0);
  gsl_matrix_set (m, 0, 1, 1.0);
  gsl_matrix_set (m, 1, 0, -2.0*mu*y[0]*y[1] - 1.0);
  gsl_matrix_set (m, 1, 1, -mu*(y[0]*y[0] - 1.0));
  dfdt[0] = 0.0;
  dfdt[1] = 0.0;
  return GSL_SUCCESS;
}

int
main (void)
{
  const gsl_odeiv_step_type * T 
    = gsl_odeiv_step_rk8pd;

  gsl_odeiv_step * s 
    = gsl_odeiv_step_alloc (T, 2);
  gsl_odeiv_control * c 
    = gsl_odeiv_control_y_new (1e-6, 0.0);
  gsl_odeiv_evolve * e 
    = gsl_odeiv_evolve_alloc (2);

  double mu = 10;
  gsl_odeiv_system sys = {func, jac, 2, &mu};

  double t = 0.0, t1 = 100.0;
  double h = 1e-6;
  double y[2] = { 1.0, 0.0 };

  while (t < t1)
    {
      int status = gsl_odeiv_evolve_apply (e, c, s,
                                           &sys, 
                                           &t, t1,
                                           &h, y);

      if (status != GSL_SUCCESS)
          break;

      printf ("%.5e %.5e %.5e\n", t, y[0], y[1]);
    }

  gsl_odeiv_evolve_free (e);
  gsl_odeiv_control_free (c);
  gsl_odeiv_step_free (s);
  return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值