LeetCode算法(4)---整数反转

本文介绍了一种有效的32位有符号整数反转算法,通过弹出和推入数字的方法,在避免溢出的前提下实现了整数的反转。讨论了算法的时间和空间复杂度,并提供了一种使用StringBuilder和异常处理的替代方案。

题目:

给出一个 32 位的有符号整数,你需要将这个整数中每位上的数字进行反转。

示例 1:
输入: 123
输出: 321

示例 2:
输入: -123
输出: -321

示例 3:
输入: 120
输出: 21

注意:
假设我们的环境只能存储得下 32 位的有符号整数,则其数值范围为 [−231, 231 − 1]。请根据这个假设,如果反转后整数溢出那么就返回 0。

解决方案

弹出和推入数字 & 溢出前进行检查

思路

我们可以一次构建反转整数的一位数字。在这样做的时候,我们可以预先检查向原整数附加另一位数字是否会导致溢出。

算法

反转整数的方法可以与反转字符串进行类比。

我们想重复“弹出” x 的最后一位数字,并将它“推入”到 rev 的后面。最后,rev 将与 x 相反。

要在没有辅助堆栈 / 数组的帮助下 “弹出” 和 “推入” 数字,我们可以使用数学方法。

//pop operation:
pop = x % 10;
x /= 10;
//push operation:
temp = rev * 10 + pop;
rev = temp;

但是,这种方法很危险,因为当 temp=rev⋅10+pop 时会导致溢出。

幸运的是,事先检查这个语句是否会导致溢出很容易。

为了便于解释,我们假设 rev 是正数。

在这里插入图片描述

class Solution {
    public int reverse(int x) {
        int rev = 0;
        while (x != 0) {
            int pop = x % 10;
            x /= 10;
            if (rev > Integer.MAX_VALUE/10 || (rev == Integer.MAX_VALUE / 10 && pop > 7)) return 0;
            if (rev < Integer.MIN_VALUE/10 || (rev == Integer.MIN_VALUE / 10 && pop < -8)) return 0;
            rev = rev * 10 + pop;
        }
        return rev;
    }
}

复杂度分析

时间复杂度:O(log(x)),x 中大约有 log(x) 位数字。
空间复杂度:O(1)。

我的方法

思路:
1、使用包装类Integer,String类的相互转换
2、使用可变字符串StringBuilder
3、提前处理负号
4、无负号的情况下倒序给StringBuilder变量赋值即可
5、32位为Integer的MAX值,超出后报错,直接用异常处理机制返回0即可(try…catch…)

public int reverse(int x) {
        Integer resultx;
        String str = Integer.toString(x);
    //String str = String.ValueOf(x);
        StringBuilder result = new StringBuilder();
        int negative = 0;
        if(str.charAt(0)=='-'){
            negative = 1;
            result.append('-');
            }
        for(int i = str.length()-1;i>negative-1;i--){
            result.append(str.charAt(i));
            }
        try{
            resultx = new Integer(result.toString());}
        catch(Exception e){
            
            return 0;
            }
        /*if(negative==1){
            return -resultx;
            }*/
        return resultx;
    }
代码下载地址: https://pan.quark.cn/s/bc087ffa872a "测控电路课后习题详解"文件.pdf是一份极具价值的学术资料,其中系统地阐述了测控电路的基础理论、系统构造、核心特性及其实际应用领域。 以下是对该文献的深入解读和系统梳理:1.1测控电路在测控系统中的核心功能测控电路在测控系统的整体架构中扮演着不可或缺的角色。 它承担着对传感器输出信号进行放大、滤除杂音、提取有效信息等关键任务,并且依据测量与控制的需求,执行必要的计算、处理与变换操作,最终输出能够驱动执行机构运作的指令信号。 测控电路作为测控系统中最具可塑性的部分,具备易于放大信号、转换模式、传输数据以及适应多样化应用场景的优势。 1.2决定测控电路精确度的关键要素影响测控电路精确度的核心要素包括:(1)噪声与干扰的存在;(2)失调现象与漂移效应,尤其是温度引起的漂移;(3)线性表现与保真度水平;(4)输入输出阻抗的特性影响。 在这些要素中,噪声干扰与失调漂移(含温度效应)是最为关键的因素,需要给予高度关注。 1.3测控电路的适应性表现测控电路在测控系统中展现出高度的适应性,具体表现在:* 具备选择特定信号、灵活实施各类转换以及进行信号处理与运算的能力* 实现模数转换与数模转换功能* 在直流与交流、电压与电流信号之间进行灵活转换* 在幅值、相、频率与脉宽信号等不同参数间进行转换* 实现量程调整功能* 对信号实施多样化的处理与运算,如计算平均值、差值、峰值、绝对值,进行求导数、积分运算等,以及实现非线性环节的线性化处理、逻辑判断等操作1.4测量电路输入信号类型对电路结构设计的影响测量电路的输入信号类型对其电路结构设计产生显著影响。 依据传感器的类型差异,输入信号的形态也呈现多样性。 主要可分为...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值