使用ZooKeeper编程 - 一个基本教程
介绍
在本教程中,我们使用ZooKeeper显示障碍和生产者 - 消费者队列的简单实现。我们将相应的类称为障碍和队列。这些示例假定您至少运行了一个ZooKeeper服务器。
两个原语都使用以下常见的代码摘录:
static ZooKeeper zk = null;
static Integer mutex;
String root;
SyncPrimitive(String address) {
if(zk == null){
try {
System.out.println("Starting ZK:");
zk = new ZooKeeper(address, 3000, this);
mutex = new Integer(-1);
System.out.println("Finished starting ZK: " + zk);
} catch (IOException e) {
System.out.println(e.toString());
zk = null;
}
}
}
synchronized public void process(WatchedEvent event) {
synchronized (mutex) {
mutex.notify();
}
}
这两个类都扩展了SyncPrimitive。通过这种方式,我们执行SyncPrimitive构造函数中所有基元共有的步骤。为了简化示例,我们在第一次实例化屏障对象或队列对象时创建一个ZooKeeper对象,并声明一个静态变量,该变量是对该对象的引用。Barrier和Queue的后续实例检查ZooKeeper对象是否存在。或者,我们可以让应用程序创建一个ZooKeeper对象并将其传递给Barrier和Queue的构造函数。
我们使用process()方法处理由于监视而触发的通知。在下面的讨论中,我们提供了设置手表的代码。监视是内部结构,使ZooKeeper能够通知客户端节点的更改。例如,如果客户端正在等待其他客户端留下障碍,那么它可以设置监视并等待对特定节点的修改,这可以指示它是等待的结束。一旦我们回顾这些例子,这一点就变得清晰了。
障碍
屏障是一种原语,它使一组进程能够同步计算的开始和结束。这种实现的一般思想是拥有一个屏障节点,其目的是成为各个进程节点的父节点。假设我们调用屏障节点“/ b1”。然后每个进程“p”创建一个节点“/ b1 / p”。一旦足够的进程创建了相应的节点,连接的进程就可以开始计算。
在此示例中,每个进程都实例化一个Barrier对象,其构造函数作为参数:
- ZooKeeper服务器的地址(例如“zoo1.foo.com:2181”)
- ZooKeeper上的障碍节点的路径(例如,“/ b1”)
- 进程组的大小
Barrier的构造函数将Zookeeper服务器的地址传递给父类的构造函数。如果不存在,则父类创建ZooKeeper实例。然后,Barrier的构造函数在ZooKeeper上创建一个barrier节点,它是所有进程节点的父节点,我们称之为root(注意:这不是ZooKeeper根“/”)。
/**
* Barrier constructor
*
* @param address
* @param root
* @param size
*/
Barrier(String address, String root, int size) {
super(address);
this.root = root;
this.size = size;
// Create barrier node
if (zk != null) {
try {
Stat s = zk.exists(root, false);
if (s == null) {
zk.create(root, new byte[0], Ids.OPEN_ACL_UNSAFE,
CreateMode.PERSISTENT);
}
} catch (KeeperException e) {
System.out
.println("Keeper exception when instantiating queue: "
+ e.toString());
} catch (InterruptedException e) {
System.out.println("Interrupted exception");
}
}
// My node name
try {
name = new String(InetAddress.getLocalHost().getCanonicalHostName().toString());
} catch (UnknownHostException e) {
System.out.println(e.toString());
}
}
要进入屏障,进程会调用enter()。该进程在根目录下创建一个节点来表示它,使用其主机名来形成节点名称。然后等到有足够的进程进入屏障。一个进程通过检查根节点具有“getChildren()”的子节点数并在没有足够的情况下等待通知来完成它。要在根节点发生更改时收到通知,进程必须设置监视,并通过调用“getChildren()”来完成。在代码中,我们知道“getChildren()”有两个参数。第一个表示要读取的节点,第二个是布尔标志,使进程能够设置监视。在代码中,标志为true。
/**
* Join barrier
*
* @return
* @throws KeeperException
* @throws InterruptedException
*/
boolean enter() throws KeeperException, InterruptedException{
zk.create(root + "/" + name, new byte[0], Ids.OPEN_ACL_UNSAFE,
CreateMode.EPHEMERAL_SEQUENTIAL);
while (true) {
synchronized (mutex) {
List<String> list = zk.getChildren(root, true);
if (list.size() < size) {
mutex.wait();
} else {
return true;
}
}
}
}
请注意,enter()会抛出KeeperException和InterruptedException,因此应用程序负责捕获和处理此类异常。
计算完成后,进程调用leave()离开屏障。首先,它删除其对应的节点,然后获取根节点的子节点。如果至少有一个子节点,则等待通知(obs:请注意,对getChildren()的调用的第二个参数为true,这意味着ZooKeeper必须在根节点上设置监视)。收到通知后,它再次检查根节点是否有子节点。
/**
* Wait until all reach barrier
*
* @return
* @throws KeeperException
* @throws InterruptedException
*/
boolean leave() throws KeeperException, InterruptedException {
zk.delete(root + "/" + name, 0);
while (true) {
synchronized (mutex) {
List<String> list = zk.getChildren(root, true);
if (list.size() > 0) {
mutex.wait();
} else {
return true;
}
}
}
}
生产者 - 消费者队列
生产者 - 消费者队列是一种分布式数据结构,进程组用于生成和使用项目。生产者进程创建新元素并将其添加到队列中。使用者进程从列表中删除元素并处理它们。在此实现中,元素是简单的整数。队列由根节点表示,并且为了向队列添加元素,生成器进程创建新节点,即根节点的子节点。
以下代码摘录对应于对象的构造函数。与Barrier对象一样,它首先调用父类SyncPrimitive的构造函数,如果不存在,则创建ZooKeeper对象。然后,它验证队列的根节点是否存在,如果不存在则创建。
/**
* Constructor of producer-consumer queue
*
* @param address
* @param name
*/
Queue(String address, String name) {
super(address);
this.root = name;
// Create ZK node name
if (zk != null) {
try {
Stat s = zk.exists(root, false);
if (s == null) {
zk.create(root, new byte[0], Ids.OPEN_ACL_UNSAFE,
CreateMode.PERSISTENT);
}
} catch (KeeperException e) {
System.out
.println("Keeper exception when instantiating queue: "
+ e.toString());
} catch (InterruptedException e) {
System.out.println("Interrupted exception");
}
}
}
生产者进程调用“produce()”将元素添加到队列,并传递整数作为参数。要向队列添加元素,该方法使用“create()”创建一个新节点,并使用SEQUENCE标志指示ZooKeeper附加与根节点关联的sequencer计数器的值。通过这种方式,我们对队列的元素施加了一个总顺序,从而保证队列中最旧的元素是下一个消耗的元素。
/**
* Add element to the queue.
*
* @param i
* @return
*/
boolean produce(int i) throws KeeperException, InterruptedException{
ByteBuffer b = ByteBuffer.allocate(4);
byte[] value;
// Add child with value i
b.putInt(i);
value = b.array();
zk.create(root + "/element", value, Ids.OPEN_ACL_UNSAFE,
CreateMode.PERSISTENT_SEQUENTIAL);
return true;
}
要使用元素,使用者进程将获取根节点的子节点,读取具有最小计数器值的节点,并返回该元素。请注意,如果存在冲突,则两个竞争进程中的一个将无法删除该节点,并且删除操作将引发异常。
对getChildren()的调用以字典顺序返回子项列表。由于词典顺序不必遵循计数器值的数字顺序,我们需要确定哪个元素是最小的。为了确定哪一个具有最小的计数器值,我们遍历列表,并从每个列表中删除前缀“元素”。
/**
* Remove first element from the queue.
*
* @return
* @throws KeeperException
* @throws InterruptedException
*/
int consume() throws KeeperException, InterruptedException{
int retvalue = -1;
Stat stat = null;
// Get the first element available
while (true) {
synchronized (mutex) {
List<String> list = zk.getChildren(root, true);
if (list.size() == 0) {
System.out.println("Going to wait");
mutex.wait();
} else {
Integer min = new Integer(list.get(0).substring(7));
for(String s : list){
Integer tempValue = new Integer(s.substring(7));
//System.out.println("Temporary value: " + tempValue);
if(tempValue < min) min = tempValue;
}
System.out.println("Temporary value: " + root + "/element" + min);
byte[] b = zk.getData(root + "/element" + min,
false, stat);
zk.delete(root + "/element" + min, 0);
ByteBuffer buffer = ByteBuffer.wrap(b);
retvalue = buffer.getInt();
return retvalue;
}
}
}
}
}
完整的例子
在下一节中,您可以找到完整的命令行应用程序来演示上述配方。使用以下命令运行它。
ZOOBINDIR="[path_to_distro]/bin"
. "$ZOOBINDIR"/zkEnv.sh
java SyncPrimitive [Test Type] [ZK server] [No of elements] [Client type]
队列测试
启动生产者以创建100个元素
java SyncPrimitive qTest localhost 100 p
启动使用者消耗100个元素
java SyncPrimitive qTest localhost 100 c
屏障测试
开始一个有2个参与者的障碍(开始的次数是您想要输入的参与者的数量)
java SyncPrimitive bTest localhost 2
来源清单
SyncPrimitive.Java
import java.io.IOException;
import java.net.InetAddress;
import java.net.UnknownHostException;
import java.nio.ByteBuffer;
import java.util.List;
import java.util.Random;
import org.apache.zookeeper.CreateMode;
import org.apache.zookeeper.KeeperException;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.Watcher;
import org.apache.zookeeper.ZooKeeper;
import org.apache.zookeeper.ZooDefs.Ids;
import org.apache.zookeeper.data.Stat;
public class SyncPrimitive implements Watcher {
static ZooKeeper zk = null;
static Integer mutex;
String root;
SyncPrimitive(String address) {
if(zk == null){
try {
System.out.println("Starting ZK:");
zk = new ZooKeeper(address, 3000, this);
mutex = new Integer(-1);
System.out.println("Finished starting ZK: " + zk);
} catch (IOException e) {
System.out.println(e.toString());
zk = null;
}
}
//else mutex = new Integer(-1);
}
synchronized public void process(WatchedEvent event) {
synchronized (mutex) {
//System.out.println("Process: " + event.getType());
mutex.notify();
}
}
/**
* Barrier
*/
static public class Barrier extends SyncPrimitive {
int size;
String name;
/**
* Barrier constructor
*
* @param address
* @param root
* @param size
*/
Barrier(String address, String root, int size) {
super(address);
this.root = root;
this.size = size;
// Create barrier node
if (zk != null) {
try {
Stat s = zk.exists(root, false);
if (s == null) {
zk.create(root, new byte[0], Ids.OPEN_ACL_UNSAFE,
CreateMode.PERSISTENT);
}
} catch (KeeperException e) {
System.out
.println("Keeper exception when instantiating queue: "
+ e.toString());
} catch (InterruptedException e) {
System.out.println("Interrupted exception");
}
}
// My node name
try {
name = new String(InetAddress.getLocalHost().getCanonicalHostName().toString());
} catch (UnknownHostException e) {
System.out.println(e.toString());
}
}
/**
* Join barrier
*
* @return
* @throws KeeperException
* @throws InterruptedException
*/
boolean enter() throws KeeperException, InterruptedException{
zk.create(root + "/" + name, new byte[0], Ids.OPEN_ACL_UNSAFE,
CreateMode.EPHEMERAL_SEQUENTIAL);
while (true) {
synchronized (mutex) {
List<String> list = zk.getChildren(root, true);
if (list.size() < size) {
mutex.wait();
} else {
return true;
}
}
}
}
/**
* Wait until all reach barrier
*
* @return
* @throws KeeperException
* @throws InterruptedException
*/
boolean leave() throws KeeperException, InterruptedException{
zk.delete(root + "/" + name, 0);
while (true) {
synchronized (mutex) {
List<String> list = zk.getChildren(root, true);
if (list.size() > 0) {
mutex.wait();
} else {
return true;
}
}
}
}
}
/**
* Producer-Consumer queue
*/
static public class Queue extends SyncPrimitive {
/**
* Constructor of producer-consumer queue
*
* @param address
* @param name
*/
Queue(String address, String name) {
super(address);
this.root = name;
// Create ZK node name
if (zk != null) {
try {
Stat s = zk.exists(root, false);
if (s == null) {
zk.create(root, new byte[0], Ids.OPEN_ACL_UNSAFE,
CreateMode.PERSISTENT);
}
} catch (KeeperException e) {
System.out
.println("Keeper exception when instantiating queue: "
+ e.toString());
} catch (InterruptedException e) {
System.out.println("Interrupted exception");
}
}
}
/**
* Add element to the queue.
*
* @param i
* @return
*/
boolean produce(int i) throws KeeperException, InterruptedException{
ByteBuffer b = ByteBuffer.allocate(4);
byte[] value;
// Add child with value i
b.putInt(i);
value = b.array();
zk.create(root + "/element", value, Ids.OPEN_ACL_UNSAFE,
CreateMode.PERSISTENT_SEQUENTIAL);
return true;
}
/**
* Remove first element from the queue.
*
* @return
* @throws KeeperException
* @throws InterruptedException
*/
int consume() throws KeeperException, InterruptedException{
int retvalue = -1;
Stat stat = null;
// Get the first element available
while (true) {
synchronized (mutex) {
List<String> list = zk.getChildren(root, true);
if (list.size() == 0) {
System.out.println("Going to wait");
mutex.wait();
} else {
Integer min = new Integer(list.get(0).substring(7));
String minNode = list.get(0);
for(String s : list){
Integer tempValue = new Integer(s.substring(7));
//System.out.println("Temporary value: " + tempValue);
if(tempValue < min) {
min = tempValue;
minNode = s;
}
}
System.out.println("Temporary value: " + root + "/" + minNode);
byte[] b = zk.getData(root + "/" + minNode,
false, stat);
zk.delete(root + "/" + minNode, 0);
ByteBuffer buffer = ByteBuffer.wrap(b);
retvalue = buffer.getInt();
return retvalue;
}
}
}
}
}
public static void main(String args[]) {
if (args[0].equals("qTest"))
queueTest(args);
else
barrierTest(args);
}
public static void queueTest(String args[]) {
Queue q = new Queue(args[1], "/app1");
System.out.println("Input: " + args[1]);
int i;
Integer max = new Integer(args[2]);
if (args[3].equals("p")) {
System.out.println("Producer");
for (i = 0; i < max; i++)
try{
q.produce(10 + i);
} catch (KeeperException e){
} catch (InterruptedException e){
}
} else {
System.out.println("Consumer");
for (i = 0; i < max; i++) {
try{
int r = q.consume();
System.out.println("Item: " + r);
} catch (KeeperException e){
i--;
} catch (InterruptedException e){
}
}
}
}
public static void barrierTest(String args[]) {
Barrier b = new Barrier(args[1], "/b1", new Integer(args[2]));
try{
boolean flag = b.enter();
System.out.println("Entered barrier: " + args[2]);
if(!flag) System.out.println("Error when entering the barrier");
} catch (KeeperException e){
} catch (InterruptedException e){
}
// Generate random integer
Random rand = new Random();
int r = rand.nextInt(100);
// Loop for rand iterations
for (int i = 0; i < r; i++) {
try {
Thread.sleep(100);
} catch (InterruptedException e) {
}
}
try{
b.leave();
} catch (KeeperException e){
} catch (InterruptedException e){
}
System.out.println("Left barrier");
}
}