Python28-7.1 降维算法之PCA主成分分析

图片

降维算法是一类数据处理技术,主要用于将高维数据映射到低维空间中,从而减少数据的维度。降维不仅可以减少计算复杂度,提高算法性能,还可以帮助数据可视化。常见的降维算法包括主成分分析(PCA)线性判别分析(LDA)多维缩放(MDS)独立成分分析(ICA)t-分布邻域嵌入(t-SNE)等。

主成分分析(PCA)

主成分(Principal Components)是主成分分析(PCA)中用于减少数据维度的新变量。这些新变量是通过将原始变量线性组合得到的,它们按数据中的方差大小排序。主成分的主要目的是在保持数据主要信息的同时,尽量减少数据的维度。

主成分的定义和性质

  1. 方差最大化:第一主成分(PC1)是原始数据线性组合后方差最大的方向。第二主成分(PC2)是在正交于第一主成分的方向上方差最大的方向,以此类推。

  2. 正交性:所有主成分之间都是正交的,即彼此独立不相关。这保证了主成分可以有效地表示原始数据的变化。

  3. 降维效果:通过选取前几个主成分,可以在很大程度上保留原始数据的变异性,从而实现数据的降维。

PCA的基本步骤

  1. 标准化数据:如果原始数据的量纲不同,首先需要标准化数据。

  2. 计算协方差矩阵:计算数据的协方差矩阵,以描述变量之间的

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值