nvidia-cuda-mps-control mps 参数介绍

本文详细介绍了NVIDIA CUDA MPS(Multi-Process Service)的运行原理、启动方法,包括如何通过命令行启动控制台和前端管理用户界面,以及环境变量设置、文件管理及关键操作如启动服务器、查看连接列表等。MPS是CUDA编程中透明管理多GPU并行计算的重要工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 功能

nvidia-cuda-mps-control - NVIDIA CUDA Multi Process Service management program
2. 启动

nvidia-cuda-mps-control -d
3. 描述


MPS  is  a  runtime  service  designed  to  let  multiple  MPI processes using CUDA to run
       concurrently on a single GPU in a way that's transparent  to  the  MPI  program.   A  CUDA
       program runs in MPS mode if the MPS control daemon is running on the system.

       When  CUDA  is  first initialized in a program, the CUDA driver attempts to connect to the
       MPS control daemon. If the connection attempt fails, the program continues to  run  as  it
       normally  would  without  MPS.  If  however,  the connection attempt to the control daemon
       succeeds, the CUDA driver then requests the daemon to start an MPS server on  its  behalf.
       If  there's  an MPS server already running, and the user id of that server process matches
       that of the requesting client process, the  control  daemon  simply  notifies  the  client
       process  of  it,  which  then  proceeds to connect to the server. If there's no MPS server
       already running on the system, the control daemon launches an MPS  server  with  the  same
       user  id  (UID) as that of the requesting client process. If there's an MPS server already
       running, but with a different user id than that of the client process, the control  daemon
       requests  the  existing  server  to shutdown as soon as all its clients are done. Once the
       existing server has terminated, the control daemon launches a new server with the user  id
       same as that of the queued client process.

       The MPS server creates the shared GPU context, manages its clients, and issues work to the
       GPU on behalf of its clients. An MPS server can support upto 16 client CUDA contexts at  a
       time.  MPS  is  transparent  to  CUDA  programs,  with all the complexity of communication
       between the client process, the server and the control daemon  hidden  within  the  driver
       binaries.

       Currently,  CUDA  MPS  is  available on 64-bit Linux only, requires a device that supports
       Unified Virtual Address (UVA) and has compute capability SM 3.5 or  higher.   Applications
       requiring  pre-CUDA  4.0 APIs are not supported under CUDA MPS.  MPS is also not supported
       on multi-GPU configurations. Please use CUDA_VISIBLE_DEVICES  when  starting  the  control
       daemon to limit visibility to a single device.
4  选项

-d
       Start the MPS control daemon, assuming the user has enough privilege (e.g. root).

   -h, --help
       Print a help message.

   <no arguments>
       Start the front-end management user interface to the MPS control daemon, which needs to be
       started first. The front-end UI keeps reading commands from stdin until EOF.  Commands are
       separated by the newline character. If an invalid command is issued and rejected, an error
       message will be printed to stdout. The  exit  status  of  the  front-end  UI  is  zero  if
       communication with the daemon is successful. A non-zero value is returned if the daemon is
       not found or connection to the daemon is broken unexpectedly. See the "quit" command below
       for more information about the exit status.

       Commands supported by the MPS control daemon:

       get_server_list
              Print out a list of PIDs of all MPS servers.

       start_server -uid UID
              Start a new MPS server for the specified user (UID).

       shutdown_server PID [-f]
              Shutdown  the  MPS  server  with  given PID. The MPS server will not accept any new
              client connections and it exits when all current clients disconnect. -f  is  forced
              immediate  shutdown.  If  a  client  launches  a faulty kernel that runs forever, a
              forced shutdown of the MPS server may be required, since the MPS server creates and
              issues GPU work on behalf of its clients.

       get_client_list PID
              Print out a list of PIDs of all clients connected to the MPS server with given PID.

       quit [-t TIMEOUT]
              Shutdown the MPS control daemon process and all MPS servers. The MPS control daemon
              stops accepting new clients while waiting for current MPS servers and  MPS  clients
              to  finish. If TIMEOUT is specified (in seconds), the daemon will force MPS servers
              to shutdown if they are still running after TIMEOUT seconds.

              This command is synchronous. The front-end UI waits for  the  daemon  to  shutdown,
              then  returns the daemon's exit status. The exit status is zero iff all MPS servers
              have exited gracefully.
5. 环境

CUDA_MPS_PIPE_DIRECTORY
              Specify the directory that contains the named pipes used  for  communication  among
              MPS  control,  MPS  server, and MPS clients. The value of this environment variable
              should be consistent in the MPS  control  daemon  and  all  MPS  client  processes.
              Default directory is /tmp/nvidia-mps

CUDA_MPS_LOG_DIRECTORY
              Specify the directory that contains the MPS log files. This variable is used by the
              MPS control daemon only. Default directory is /var/log/nvidia-mps
6. 文件

Log files created by the MPS control daemon in the specified directory

       control.log
              Record startup and shutdown of MPS control daemon, user commands issued with  their
              results, and status of MPS servers.

       server.log
              Record startup and shutdown of MPS servers, and status of MPS clients.

 

<think>好的,用户想了解MPS加速技术的实现方法。首先我需要明确MPS是什么,可能指的是NVIDIA的Multi-Process Service,或者是苹果的Metal Performance Shaders。根据提供的引用内容,引用[2]和[3]提到了NVIDIA MPSGPU上的应用,而引用[4]提到了iOS的Metal及MPS。所以用户的问题可能涉及这两个方面,但根据上下文中的引用,更可能是关于NVIDIAMPS。 首先,我需要回顾NVIDIA MPS的基本概念。根据引用[3],MPS允许多任务共享CUDA Context,而不是时间分片,这样可以减少上下文切换开销,提高吞吐量。引用[2]中提到使用MPS和MIG结合来最大化GROMACS的吞吐量,提升1.8倍。这说明MPS在并行计算中的应用。 接下来,用户需要实现方法。根据引用[3],实现步骤可能包括安装MPS服务、设置环境变量、启动MPS服务器,然后在程序中利用多进程或线程。引用[1]提到多CUDA流、多CPU线程和进程的支持,这可能与MPS配置有关。 同时,要注意引用[4]中的Metal MPS,如果用户指的是iOS开发,可能需要不同的步骤,比如使用Metal框架和MPS提供的着色器。但根据之前的引用,重点可能在NVIDIAMPS,所以需要分情况讨论。 需要确保回答结构清晰,步骤详细,并引用提供的资料。可能的问题包括安装配置、代码示例、优化技巧等。同时,生成相关问题时要覆盖不同方面,比如性能分析、应用场景、优化方法等。</think>### MPS加速技术实现方法 MPS(Multi-Process Service)是NVIDIA GPU的并行计算加速技术,通过共享GPU资源提升多任务处理效率[^3]。以下是具体实现步骤: --- #### **1. 硬件与软件要求** - **GPU架构**:需支持MPS(如Volta架构及以上) - **驱动版本**:NVIDIA驱动≥418.81 - **CUDA版本**:CUDA Toolkit≥11.0 --- #### **2. MPS服务配置** ##### **步骤1:安装MPS** ```bash sudo nvidia-smi -pm 1 # 启用持久化模式 sudo nvidia-modprobe -u -c=0 # 加载MPS内核模块 ``` ##### **步骤2:启动MPS服务** ```bash export CUDA_VISIBLE_DEVICES=0 # 绑定到指定GPU nvidia-cuda-mps-control -d # 启动MPS守护进程 ``` ##### **步骤3:验证状态** ```bash echo "status" | nvidia-cuda-mps-control # 输出"Status: Running"表示成功 ``` --- #### **3. 编程实现** ##### **多进程共享GPU示例(Python)** ```python import os from multiprocessing import Process def gpu_task(): os.environ["CUDA_MPS_PIPE_DIRECTORY"] = "/tmp/nvidia-mps" # 指定MPS通信路径 # 在此调用CUDA计算代码(如PyTorch/TensorFlow) if __name__ == "__main__": processes = [Process(target=gpu_task) for _ in range(4)] for p in processes: p.start() for p in processes: p.join() ``` ##### **关键配置参数** - `CUDA_MPS_ACTIVE_THREAD_PERCENTAGE`:控制单个进程的GPU线程占用率(默认100%) - `CUDA_MPS_PIPE_DIRECTORY`:指定MPS通信管道路径 --- #### **4. 性能优化技巧** 1. **结合MIG技术**:在A100等GPU上划分MIG实例,每个实例搭配MPS实现资源隔离(吞吐量提升1.8倍[^2]) 2. **混合并行模式**: - **多进程**:通过MPS共享GPU上下文 - **多线程**:使用CUDA Streams实现流水线并行[^1] 3. **显存管理**:监控`nvidia-smi`确保总显存使用量不超过GPU容量 --- #### **5. 应用场景** - **科学计算**:如分子动力学模拟(GROMACS多任务并行) - **AI推理**:多模型并行推理 - **云计算**:提升GPU虚拟化资源利用率 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值