概述
俗称读写ArrayList,线程安全的ArrayList版本,其所有写操作都是基于底层数组的副本操作,成功后再替换底层数组,可以理解为基于"snapshot" array的并发,适用于读多写少的并发环境。
1)采用"snapshot" iterator,在遍历过程中,底层数组是不会修改的,不存在并发干扰,不会抛出ConcurrentModificationException异常;
2)遵守内存一致性:一个线程中先于“某元素添加到CopyOnWriteArrayList”的操作happen-before另一个线程中后于“从中获取或删除该元素”的操作。
数据结构
基于数组,采用一把写锁:
/** The lock protecting all mutators */
transient final ReentrantLock lock = new ReentrantLock();
/** The array, accessed only via getArray/setArray. */
private volatile transient Object[] array;
构造器
// 无参构造,将底层数组设置为空数组
public CopyOnWriteArrayList() {
setArray(new Object[0]);
}
// 带Collection参数构造
public CopyOnWriteArrayList(Collection<? extends E> c) {
Object[] elements = c.toArray();
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if (elements.getClass() != Object[].class)
elements = Arrays.copyOf(elements, elements.length, Object[].class);
setArray(elements);
}
// 带数组参数构造
public CopyOnWriteArrayList(E[] toCopyIn) {
setArray(Arrays.copyOf(toCopyIn, toCopyIn.length, Object[].class));
}
增删改查
增
public boolean add(E e) {
final ReentrantLock lock = this.lock;
lock.lock(); // 获取写锁
try {
Object[] elements = getArray();
int len = elements.length;
Object[] newElements = Arrays.copyOf(elements, len + 1); // 基于底层数组获取副本
newElements[len] = e;
setArray(newElements); // 对副本写完后,再替换为底层数组
return true;
} finally {
lock.unlock(); // 释放写锁
}
}
删
public E remove(int index) {
final ReentrantLock lock = this.lock;
lock.lock(); // 获取写锁
try {
Object[] elements = getArray();
int len = elements.length;
E oldValue = get(elements, index);
int numMoved = len - index - 1;
// 基于底层数组副本删除,完成再替换为底层数组
if (numMoved == 0)
setArray(Arrays.copyOf(elements, len - 1));
else {
Object[] newElements = new Object[len - 1];
System.arraycopy(elements, 0, newElements, 0, index);
System.arraycopy(elements, index + 1, newElements, index,
numMoved);
setArray(newElements);
}
return oldValue;
} finally {
lock.unlock(); // 释放写锁
}
}
改
public E set(int index, E element) {
final ReentrantLock lock = this.lock;
lock.lock(); // 获取写锁
try {
Object[] elements = getArray();
E oldValue = get(elements, index);
if (oldValue != element) {
int len = elements.length;
Object[] newElements = Arrays.copyOf(elements, len); // 获取底层数组副本
newElements[index] = element; // 对副本进行修改
setArray(newElements); // 完成后替换为底层数组
} else {
// Not quite a no-op; ensures volatile write semantics
setArray(elements);
}
return oldValue;
} finally {
lock.unlock();// 释放写锁
}
}
查
public E get(int index) {
return get(getArray(), index);
}
迭代器
采用基于底层数组的快照,不支持写操作:remove、set、add,一个ListIterator:
private static class COWIterator<E> implements ListIterator<E> {
/** Snapshot of the array */
private final Object[] snapshot;
/** Index of element to be returned by subsequent call to next. */
private int cursor;
private COWIterator(Object[] elements, int initialCursor) {
cursor = initialCursor;
snapshot = elements;
}
public boolean hasNext() {
return cursor < snapshot.length;
}
public boolean hasPrevious() {
return cursor > 0;
}
@SuppressWarnings("unchecked")
public E next() {
if (! hasNext())
throw new NoSuchElementException();
return (E) snapshot[cursor++];
}
@SuppressWarnings("unchecked")
public E previous() {
if (! hasPrevious())
throw new NoSuchElementException();
return (E) snapshot[--cursor];
}
public int nextIndex() {
return cursor;
}
public int previousIndex() {
return cursor-1;
}
public void remove() {
throw new UnsupportedOperationException();
}
public void set(E e) {
throw new UnsupportedOperationException();
}
public void add(E e) {
throw new UnsupportedOperationException();
}
}
特性
如何实现线程安全?
/** The lock protecting all mutators */
transient final ReentrantLock lock = new ReentrantLock();
/** The array, accessed only via getArray/setArray. */
private volatile transient Object[] array;
// array volatile读
final Object[] getArray() {
return array;
}
// array volatile写
final void setArray(Object[] a) {
array = a;
}
CopyOnWriteArrayList的线程安全体现在读与写、写与写的线程安全:
1)所有写操作add、remove、set等共用lock一把锁;
2)所有写操作如果有修改,则对array volatile写;
3)所有读操作首先进行的是array volatile读;
疑问
1)为什么中的无用setArray(elements);不能去掉?