斯坦纳点
斯坦纳点别名正等角中心、费尔马点、斯坦纳点
在三角形的三边各向其外侧作等边三角形,这三个等边三角形的外接圆交于一点T,该点T即称为托里拆利点(Torricelli’s point ),而三个等边三角形的外接圆称为托里拆利圆。在一定条件下,托里拆利点和正等角中心、费尔马点等是一回事。托里拆利点是由意大利物理学家托里拆利发现的。该问题是费马(1601-1665)作为“求一点,使它至一三角形三顶点的距离和最小"这一著名的极值问题而向意大利物理学家托里拆利(1608-1647)提出,并为托里拆利所解决的,当三角形内角均小于120°时点K即为所求,故称K为托里拆利点,也称费马点。以后,德国斯太纳((1796-1863)独立提出并推广了它,故又称斯太纳问题。

斯坦纳树
斯坦纳树问题是组合优化问题,与最小生成树相似,是最短网络的一种。最小生成树是在给定的点集和边中寻求最短网络使所有点连通。而最小斯坦纳树允许在给定点外增加额外的点,使生成的最短网络开销最小。
斯坦纳树问题的定义随着历史的发展在不断的扩展和推广:
- 瑞士数学家斯坦纳(J.Steiner,1796—1863)将问题推广成:在平面上求一点,使得这一点到平面 上给定的若干个点(称为所与点)的距离之和最小。这可以看作斯坦纳树问题的雏形。
- 考虑到点的其他相关因素,加入了权重的表示。形成的推广定义,德国的两位数学家韦伯(H.Weber,1842—1913)和维斯菲尔德(E.Wieszfeld)分别在1909年和1937年将该问题作为工 厂选址问题提出来:某地有给定的若干个仓库,每个仓库的其他相关因素可以换算成一个权重表示,求一建造工厂的合适地点,使工厂到每个仓库的距离与权重乘积 的总和最小,则这个工厂的地址是最经济、便利的。
- 库朗(R.Courant)和罗宾斯(H.Robbins)提出第一个定义中,斯坦纳对此问题的推广是一种平庸的推广。要得到一个有意义的推广,需要考虑的不是引进一个点,而应是引进若干个点,使引进的点与原来给定的点 连成的网络最小。他们将此新问题称为斯坦纳树问题。给出的定义为:
假设原来已经给定了n个点,库朗等指出需要引进的点数至多为n-2,此种点称为斯坦纳点。过每一斯坦纳点,至多有三条边通过。若为三条边,则它们两两交成 120°角;若为两条边,则此斯坦纳点必为某一已给定的点,且此两条边交成的角必大于或等于120°。其中最小的网络称为已给定点的集合的最小斯坦纳树, 记作SMT。若此SMT的斯坦纳点中有等于给定点的点,则称此SMT为退化的,此给定点称为退化点。

最低0.47元/天 解锁文章
3276

被折叠的 条评论
为什么被折叠?



