It is confused that the difference of JSP with Servlet

深入探讨了JSP页面在没有指定路径的情况下,如何由容器找到并执行的过程,揭示了Servlet容器查找和执行Servlet程序的机制,并通过修订后的上下文进行了详细解释。
       Yesterday, I am very confuse after I studied JSP.


        We must configure the specifically path for very Servlet , because the Servlet Container could execute a Servlet Programme by a xml path to find the programme. 


But the JSP yet indeed not need to set a path for the jsp page. So then how does the JSP Container find the JSP programme to be executing?


The context is revised by 1Checker.

多源动态最优潮流的分布鲁棒优化方法(IEEE118节点)(Matlab代码实现)内容概要:本文介绍了基于Matlab实现的多源动态最优潮流的分布鲁棒优化方法,适用于IEEE118节点电力系统。该方法旨在应对电力系统中源荷不确定性带来的挑战,通过构建分布鲁棒优化模型,有效处理多源输入下的动态最优潮流问题,提升系统运行的安全性和经济性。文中详细阐述了模型的数学 formulation、求解算法及仿真验证过程,并提供了完整的Matlab代码实现,便于读者复现与应用。该研究属于电力系统优化调度领域的高水平技术复现,具有较强的工程实用价值。; 适合人群:具备电力系统基础知识和Matlab编程能力的研究生、科研人员及从事电力系统优化调度的工程技术人员,尤其适合致力于智能电网、鲁棒优化、能源调度等领域研究的专业人士。; 使用场景及目标:①用于电力系统多源环境下动态最优潮流的建模与求解;②支撑含可再生能源接入的电网调度决策;③作为鲁棒优化方法在实际电力系统中应用的教学与科研案例;④为IEEE118节点系统的仿真研究提供可复现的技术支持。; 阅读建议:建议结合提供的Matlab代码逐模块分析,重点关注不确定变量的分布鲁棒建模、目标函数构造及求解器调用方式。读者应具备一定的凸优化和电力系统分析基础,推荐配合YALMIP工具包与主流求解器(如CPLEX、Gurobi)进行调试与扩展实验。
内容概要:本文系统介绍了物联网与云计算的基本概念、发展历程、技术架构、应用场景及产业生态。文章阐述了物联网作为未来互联网的重要组成部分,通过RFID、传感器网络、M2M通信等技术实现物理世界与虚拟世界的深度融合,并展示了其在智能交通、医疗保健、能源管理、环境监测等多个领域的实际应用案例。同时,文章强调云计算作为物联网的支撑平台,能够有效应对海量数据处理、资源弹性调度和绿色节能等挑战,推动物联网规模化发展。文中还详细分析了物联网的体系结构、标准化进展(如IEEE 1888、ITU-T、ISO/IEC等)、关键技术(中间件、QoS、路由协议)以及中国运营商在M2M业务中的实践。; 适合人群:从事物联网、云计算、通信网络及相关信息技术领域的研究人员、工程师、高校师生以及政策制定者。; 使用场景及目标:①了解物联网与云计算的技术融合路径及其在各行业的落地模式;②掌握物联网体系结构、标准协议与关键技术实现;③为智慧城市、工业互联网、智能物流等应用提供技术参考与方案设计依据;④指导企业和政府在物联网战略布局中的技术选型与生态构建。; 阅读建议:本文内容详实、覆盖面广,建议结合具体应用场景深入研读,关注技术标准与产业协同发展趋势,同时结合云计算平台实践,理解其对物联网数据处理与服务能力的支撑作用。
标题基于Java的停车场管理系统设计与实现研究AI更换标题第1章引言介绍停车场管理系统研究背景、意义,分析国内外现状,阐述论文方法与创新点。1.1研究背景与意义分析传统停车场管理问题,说明基于Java系统开发的重要性。1.2国内外研究现状综述国内外停车场管理系统的发展现状及技术特点。1.3研究方法以及创新点介绍本文采用的研究方法以及系统开发中的创新点。第2章相关理论总结Java技术及停车场管理相关理论,为系统开发奠定基础。2.1Java编程语言特性阐述Java的面向对象、跨平台等特性及其在系统开发中的应用。2.2数据库管理理论介绍数据库设计原则、SQL语言及在系统中的数据存储与管理。2.3软件工程理论说明软件开发生命周期、设计模式在系统开发中的运用。第3章基于Java的停车场管理系统设计详细介绍系统的整体架构、功能模块及数据库设计方案。3.1系统架构设计阐述系统的层次结构、模块划分及模块间交互方式。3.2功能模块设计介绍车辆进出管理、车位管理、计费管理等核心功能模块设计。3.3数据库设计给出数据库表结构、字段设计及数据关系图。第4章系统实现与测试系统实现过程,包括开发环境、关键代码及测试方法。4.1开发环境与工具介绍系统开发所使用的Java开发环境、数据库管理系统等工具。4.2关键代码实现展示系统核心功能的部分关键代码及实现逻辑。4.3系统测试方法与结果阐述系统测试方法,包括单元测试、集成测试等,并展示测试结果。第5章研究结果与分析呈现系统运行效果,分析系统性能、稳定性及用户满意度。5.1系统运行效果展示通过截图或视频展示系统实际操作流程及界面效果。5.2系统性能分析从响应时间、吞吐量等指标分析系统性能。5.3用户满意度调查通过问卷调查等方式收集用户反馈,分析用户满意度。第6章结论与展望总结研究成果,提出系统改进方向及未来发展趋势。6.1研究结论概括基于Java的停车场管理
根据原作 https://pan.quark.cn/s/a4b39357ea24 的源码改编 QT作为一个功能强大的跨平台应用程序开发框架,为开发者提供了便利,使其能够借助C++语言编写一次代码,便可在多个操作系统上运行,例如Windows、Linux、macOS等。 QT5.12是QT框架中的一个特定版本,该版本引入了诸多改进与新增特性,包括性能的提升、API支持的扩展以及对现代C++标准的兼容性。 在QT5.12环境下实现后台对鼠标侧键的监控,主要涉及以下几个关键知识点:1. **信号与槽(Signals & Slots)机制**:这一机制是QT的核心,主要用于实现对象之间的通信。 在监测鼠标事件时,可以通过定义信号和槽函数来处理鼠标的点击行为,比如,当鼠标侧键被触发时,会触发一个信号,然后将其连接至相应的槽函数以执行处理。 2. **QEvent类**:在QT中,QEvent类代表了多种类型的事件,涵盖了键盘事件、鼠标事件等。 在处理鼠标侧键时,需要关注`QEvent::MouseButtonPress`和`QEvent::MouseButtonRelease`事件,尤其是针对鼠标侧键的独特标识。 3. **QMouseEvent类**:每当鼠标事件发生,系统会发送一个QMouseEvent对象。 通过这个对象,可以获取到鼠标的按钮状态、位置、点击类型等信息。 在处理侧键时,可以检查`QMouseEvent::button()`返回的枚举值,例如`Qt::MiddleButton`表示的是鼠标中键(即侧键)。 4. **安装事件过滤器(Event Filter)**:为了在后台持续监控鼠标,可能需要为特定的窗口或对象安装事件过滤器。 通过实现`QObject::eventFilter...
<think>We are going to implement a binary tree in Python. We'll create a class for the tree nodes and then a class for the binary tree that will contain methods for inserting nodes and traversing the tree. The binary tree will support basic operations. We'll implement: - Node class: to represent each node in the tree (with data, left, and right). - BinaryTree class: with an initializer (root) and methods for insertion and traversals (in-order, pre-order, post-order). However, note that the user asked for an implementation of a binary tree. We'll focus on a simple binary tree (not binary search tree) for generality. But note: without ordering, insertion is arbitrary. Usually, we implement a binary search tree (BST) to have structure. Since the question does not specify, we'll do a basic binary tree and then show how to insert in a BST manner. Since the user mentioned "binary tree", we can implement a simple tree with a method to insert arbitrarily (for example, level order insertion). But more typically, when people ask for a binary tree they mean a BST. Let's clarify: we'll implement a BST. Steps for BST: - Each node has a value, and for any node, all values in the left subtree are less than the node's value, and all values in the right subtree are greater. We'll implement: - Node class: with value, left, right. - BinaryTree (BST) class: __init__: initializes root as None. insert(value): inserts a value into the BST. We'll also implement traversal methods: in-order, pre-order, post-order. Alternatively, we can also implement a method for level-order insertion (non-BST way) if the user wants a general binary tree. But the question is ambiguous. Since BST is the most common, we'll do BST. However, the user did not specify BST. To be safe, we'll implement a binary tree that can be built by inserting in a level-order fashion (like a complete tree). We can provide two versions? But the instruction says one solution. Since the question is "How do you implement a binary tree in Python?" without specifics, I'll provide a basic binary tree structure and then show insertion in BST style. Then note that we can also insert arbitrarily in non-BST ways, but the BST is a common use case. Decision: We'll create a Node class and then a BinaryTree class that supports: - BST insertion (so we call it BinarySearchTree) OR - Alternatively, we can do a general binary tree that doesn't enforce BST. But without structure, it's not very useful. Let me re-read the question: "How do you implement a binary tree in Python?" I'll provide a general binary tree node and then show how to build a tree by setting left and right. Then I'll show a BST as a special case. But to keep it simple, I'll implement a BST. Implementation for BST: class Node: def __init__(self, value): self.value = value self.left = None self.right = None class BinaryTree: def __init__(self): self.root = None def insert(self, value): if self.root is None: self.root = Node(value) else: self._insert_recursive(self.root, value) def _insert_recursive(self, node, value): if value < node.value: if node.left is None: node.left = Node(value) else: self._insert_recursive(node.left, value) else: # value >= node.value if node.right is None: node.right = Node(value) else: self._insert_recursive(node.right, value) Then traversal methods. But note: for a general binary tree (non-BST) we wouldn't have a natural insertion order. We might want to insert in the first available spot in level order. So let's do that if the user wants a general tree. However, the question is open. Since the user did not specify, I'll provide both and explain. But to keep the answer focused, I'll choose the BST as it's more structured. Alternatively, we can do: Option 1: BST (as above) Option 2: General binary tree with level-order insertion: We maintain the tree as a complete tree. We use a queue to find the first node that has an empty child (left or right) and insert there. Let's go with Option 2 for a general binary tree? The question just says "binary tree", so let me do a general one with level-order insertion. However, note: the question doesn't specify how to build the tree. We are just to create the data structure. So we can create the nodes and link them arbitrarily. But without an insertion method, the tree structure is built manually. How about: we implement a class for Node and then the user can build the tree by setting left and right? That's the most basic. But the user might want an insertion method. Since the question is ambiguous, I'll show a basic node structure and then a BST insertion as a common example. Let me structure the answer: We'll define a Node class that can form a binary tree by having left and right child references. Then, we'll create a BinaryTree class that holds the root and provides methods for traversal. Then, we'll add a method for BST insertion as an example of building the tree. Alternatively, if we want a general tree with level-order insertion, we can also provide that. To cover both, I'll implement: Node class (same for both) BinaryTree class that has: __init__(self, root=None) Then we'll have two insertion methods? But let's not complicate. Since the question is open, I'll show two separate examples. However, the instruction says: "How do you implement a binary tree". So the minimal implementation is: class Node: def __init__(self, key): self.left = None self.right = None self.val = key Then we can create nodes and link: root = Node(1) root.left = Node(2) root.right = Node(3) This is a binary tree. But to provide more value, I'll also show a BST with insertion method and traversals. I choose: we'll implement a BST with insertion and in-order traversal (which will give sorted order). Code: class Node: def __init__(self, value): self.value = value self.left = None self.right = None class BinaryTree: def __init__(self): self.root = None def insert(self, value): if self.root is None: self.root = Node(value) else: self._insert_recursive(self.root, value) def _insert_recursive(self, node, value): if value < node.value: if node.left is None: node.left = Node(value) else: self._insert_recursive(node.left, value) else: # value >= node.value if node.right is None: node.right = Node(value) else: self._insert_recursive(node.right, value) def in_order_traversal(self, node, result=None): if result is None: result = [] if node: self.in_order_traversal(node.left, result) result.append(node.value) self.in_order_traversal(node.right, result) return result Then we can also add pre-order and post-order. But note: the above BST insertion duplicates: we go left for <, and right for >=. This allows duplicates. If we don't want duplicates, we can choose to not insert duplicates? The question doesn't specify. Alternatively, we can disallow duplicates by: if value == node.value: return # or handle as desired Let's not handle duplicates for simplicity. However, the user might want a general tree. But the question is "binary tree", and BST is a kind of binary tree. So we'll present the BST implementation. Example usage: tree = BinaryTree() tree.insert(5) tree.insert(3) tree.insert(7) tree.insert(2) tree.insert(4) tree.insert(6) tree.insert(8) print(tree.in_order_traversal(tree.root)) # [2,3,4,5,6,7,8] We'll also add pre-order and post-order for completeness. Alternatively, we can also make the traversals as generators? But we'll return a list for simplicity. We'll add: def pre_order_traversal(self, node, result=None): if result is None: result = [] if node: result.append(node.value) self.pre_order_traversal(node.left, result) self.pre_order_traversal(node.right, result) return result def post_order_traversal(self, node, result=None): if result is None: result = [] if node: self.post_order_traversal(node.left, result) self.post_order_traversal(node.right, result) result.append(node.value) return result And we can also add level-order traversal (BFS) for completeness. Let's add: from collections import deque def level_order_traversal(self): result = [] queue = deque() if self.root: queue.append(self.root) while queue: node = queue.popleft() result.append(node.value) if node.left: queue.append(node.left) if node.right: queue.append(node.right) return result We'll now write the code accordingly. But note: the class name is BinaryTree but we are implementing a BST. We can call it BinarySearchTree? Not necessary, but let's call it BinaryTree and note that our insertion is for BST. Alternatively, we can make the insertion method customizable? Not now. Let's code accordingly. Summary: We implement a Node class and a BinaryTree class that is actually a BST. Steps: 1. Define Node. 2. Define BinaryTree with root. 3. Implement insert (for BST). 4. Implement traversals: in-order, pre-order, post-order, level-order. We'll write the code and then explain. Note: We are using recursion for insert and traversals. For large trees, recursion might hit recursion limit. Then we can use iterative methods. But for simplicity, we do recursion. Let's code. </think>### Binary Tree Implementation in Python A binary tree is a hierarchical data structure where each node has at most two children (left and right). Below is a complete implementation of a binary tree with insertion and traversal methods. #### Implementation ```python class Node: """Node class for binary tree elements""" def __init__(self, value): self.value = value self.left = None self.right = None class BinaryTree: """Binary Tree implementation with basic operations""" def __init__(self): self.root = None def insert(self, value): """Inserts a value into the tree (level-order insertion)""" new_node = Node(value) if not self.root: self.root = new_node return from collections import deque queue = deque([self.root]) while queue: current = queue.popleft() if not current.left: current.left = new_node return else: queue.append(current.left) if not current.right: current.right = new_node return else: queue.append(current.right) def inorder_traversal(self, node=None, result=None): """Returns nodes in Left -> Root -> Right order""" if result is None: result = [] if node is None: node = self.root if node.left: self.inorder_traversal(node.left, result) result.append(node.value) if node.right: self.inorder_traversal(node.right, result) return result def preorder_traversal(self, node=None, result=None): """Returns nodes in Root -> Left -> Right order""" if result is None: result = [] if node is None: node = self.root result.append(node.value) if node.left: self.preorder_traversal(node.left, result) if node.right: self.preorder_traversal(node.right, result) return result def postorder_traversal(self, node=None, result=None): """Returns nodes in Left -> Right -> Root order""" if result is None: result = [] if node is None: node = self.root if node.left: self.postorder_traversal(node.left, result) if node.right: self.postorder_traversal(node.right, result) result.append(node.value) return result # Example usage if __name__ == "__main__": tree = BinaryTree() values = [5, 3, 7, 2, 4, 6, 8] for val in values: tree.insert(val) print("In-order traversal:", tree.inorder_traversal()) # [2, 3, 4, 5, 6, 7, 8] print("Pre-order traversal:", tree.preorder_traversal()) # [5, 3, 2, 4, 7, 6, 8] print("Post-order traversal:", tree.postorder_traversal()) # [2, 4, 3, 6, 8, 7, 5] ``` #### Key Components Explained: 1. **`Node` Class**: - Stores a `value` and references to `left`/`right` child nodes. 2. **`BinaryTree` Class**: - **`insert(value)`**: Inserts values using **level-order traversal** (ensures the tree remains balanced). Uses a queue to find the first available slot. - **Traversal Methods**: - **`inorder_traversal`**: Left subtree → Root → Right subtree (returns sorted values for BSTs). - **`preorder_traversal`**: Root → Left subtree → Right subtree. - **`postorder_traversal`**: Left subtree → Right subtree → Root. 3. **Example Usage**: - Builds a tree with values `[5, 3, 7, 2, 4, 6, 8]` and demonstrates all three traversal orders. #### Time Complexity Analysis: - **Insert**: O(n) – Worst-case scans all nodes to find insertion position. - **Traversals**: O(n) – Each node is visited exactly once. ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值