分布式数据库学习--分布式数据库的设计

本文探讨了分布式数据库的设计,包括分布式目录管理、并发控制和可靠性保障。在分布式目录管理中,强调了元数据管理和中心化策略的重要性,如HDFS的NameNode Federation。在并发控制方面,介绍了悲观锁和乐观锁两种方法,并提到了死锁问题。对于可靠性保障,提出了副本策略以应对数据丢失,但同时也带来了数据一致性和存储成本的挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

分布式系计算作为一个比较复杂的课题,需要读者具备良好的计算机基础知识。有了这些理论知识的支持,我们才能更好的阅读,学习当前各个主流的分布式系统以及框架。笔者最近饶有兴趣的开始学习起了分布式数据库的知识。因为笔者主要研究的方向是HDFS,也就是分布式存储这块,所以学习了解这块内容对笔者来说能在未来更好地贡献于HDFS。OK,转回正题,最近笔者学习了分布式数据库的设计问题,换句话说,也就是分布式数据库在初始设计的时候要考虑哪些因素。考虑到了这些内容之后,我们将会对分布式数据库会有一个大概的了解。


分布式数据库的起源

分布式数据库的起源要归结于当今数据量规模的不断增长以及业务使用场景的日益复杂化。当面对海量数据规模的情况下,传统单一式的、集中式管理的数据库逐渐暴露出许多缺陷,它渐渐地会达到一个瓶颈点,于是我们有了分布式数据库的概念。分布式数据库,顾名思义,它的数据是分散地存储于各个节点之上。如果数据量规模变大,它还能灵活地进行扩展。但是分布式数据库的一个比较大的问题是数据的统一管理。因为数据是分散在各地的(它不像集中式管理数据库那样可以方便地在某一个中心管理器上做统一管理),所以我们会遇到很多挑战,比如数据的一致性问题、数据的容错或者是元数据管理问题等等。


分布式数据库的设计

本文笔者打算简单来聊聊分布式数据库在初始设计的时候需要考虑的几点问题。


分布式目录管理

分布式目录管理在某种程度上来说可以理解为分布式情况下元数据的管理。因为数据在分散存储的情况下,各个节点存储的数据只是全局数据的一部分。基于此条件下,各个节点最能直接看到的应该是它本地的数据目录信息。所以这里要解决的一个问题是如何让各个节点感知到其它数据信息的存在,包括数据的位置、大小和副本情况等等。只有了解了这些信息后,在单一节点的查询才能访问到非本地节点的数据。可能我们会说,一种简单的做法是将全局元数据信息复制在每个节点上。这种做法的确能解决前面我们提到的问题,但是在操作上还是稍显简单,暴力。首先这种做法开销一定是不小的,而且是否有必要维护庞大的目录树信息在每个节点上呢,特别是当元数据信息急剧增长

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值