RAG(检索增强生成)知识系统是 Dify 的核心组件,它使 AI 应用程序能够检索和利用外部知识。该系统管理从文档提取到知识检索的整个流程,支持不同的索引技术、文档处理方法和检索策略。
架构概述
RAG 知识系统遵循三阶段提取-转换-加载 (ETL) 流程进行文档处理,并结合复杂的检索机制进行知识访问。
RAG 系统架构图
RAG(检索增强生成)知识系统使应用程序能够通过以下方式利用基于文档的知识:
- 文档提取 :处理各种文档格式
- 分块和嵌入 :将文本转换为矢量表示
- 知识检索 :查找与用户查询相关的信息
数据集管理
数据集结构
数据集是 RAG 知识体系的基本组织单元。每个数据集包含文档,文档被划分为多个段,以便于索引和检索。
数据集创建
为了创建数据集,系统接受包括名称、描述、索引技术和检索配置在内的参数。
POST /datasets
数据集创建工作流程:
- 验证参数
- 创建数据集记录
- 如果使用高质量索引,请配置嵌入模型
- 设置检索配置
- 设置权限
索引技术
该系统支持两种主要索引技术:
技术 | 描述 | 向量数据库 | Embedding 模型 | 用例 |
---|---|---|---|---|
high_quality | 使用嵌入模型将文本转换为向量 | 必需 | 必需 | 更好的语义理解,处理细微的查询 |
economy | 使用基于关键字的倒排索引 | 不需要 | 不需要 | 更低的资源占用,精准的关键字匹配 |
文档形式
文档可以以三种不同的形式进行处理和索引:
形式 | 描述 | 索引方法 |
---|---|---|
text_model | 直接嵌入的默认文本文档 | 直接嵌入文档内容 |
qa_model | 问答对 | 生成问答对并嵌入问题 |
hierarchical_model (父子模型) | 带有子段的父块 | 创建具有父块和子块的层次结构 |
文档处理 Pipeline
文档处理管道遵循提取-转换-加载(ETL)模式:
提取阶段
提取阶段处理不同的数据源:
- 上传文件 :处理上传的文件,如 PDF、DOCX 等。
- Notion 导入 :从 Notion 页面提取内容
- 网站抓取 :从抓取的网站中提取内容
提取过程将不同的内容源规范化为统一的文本文档格式。
转换阶段
转换阶段处理:
- 文本清理 :根据配置的规则删除多余的空格、URL、电子邮件
- 分割(Segmentation) :根据配置的规则将文档分成块
- 格式化 :根据文档形式(文本、问答、分层)准备索引文本
关键分割参数:
- 分隔符(Separator) :用于分割文本的字符序列(默认值:
\n\n
) - 最大令牌数(Max Tokens) :每个段的最大令牌数(默认值:1024)
- 块重叠(Chunk Overlap) :段之间的标记重叠(默认值:50)
加载阶段
- 将片段保存到数据库
- 为所有文档创建关键字索引
- 为了实现高质量索引,生成嵌入并将其存储在向量数据库中
该过程包括:
- 为段创建数据库记录
- 使用配置的嵌入模型生成文本嵌入
- 建立搜索索引(关键字和/或向量)
检索系统
检索系统负责根据用户查询从索引数据集中查找相关信息。
检索方法
系统支持多种检索方式:
方法 | 描述 | 要求 | 优势 |
---|---|---|---|
语义搜索(Semantic Search) | 使用向量相似性来查找语义相关的内容 | 嵌入模型,向量数据库 | 最适合基于含义的查询 |
关键词搜索(Keyword Search) | 使用精确关键字匹配 | 关键词索引 | 适合精确的术语搜索 |
全文搜索(Full-Text Search) | 使用全文索引技术 | 全文索引 | 平衡精度和召回率 |
混合搜索(Hybrid Search) | 结合多种方法 | 所有索引 | 最佳整体表现 |
检索策略
系统支持两种主要的检索策略:
- 单一检索(Single Retrieval) :使用带有 AI 模型的单一数据集来路由查询
- 多重检索(Multiple Retrieval) :使用可配置的权重和评分在多个数据集中进行搜索
结果处理
- 格式化为文档上下文
- 可能使用重新排序模型进行重新排序
- 根据相关性阈值进行评分和过滤
- 按相关性排序
- 准备返回调用应用程序
与工作流集成
RAG 知识系统通过知识检索节点与 Dify 的工作流系统集成:
知识检索节点:
- 从工作流中获取查询输入
- 配置检索参数
- 调用数据集检索系统
- 将格式化的知识返回到工作流
API 集成
服务 API
RAG 知识系统公开了 RESTful API 以与客户端应用程序集成:
接口 | Method | 描述 |
---|---|---|
/datasets | POST | 创建新数据集 |
/datasets | GET | 列出可用数据集 |
/datasets/{dataset_id} | GET | 获取数据集详细信息 |
/datasets/{dataset_id} | POST | 更新数据集设置 |
/datasets/{dataset_id} | DELETE | 删除数据集 |
/datasets/{dataset_id}/document/create-by-text | POST | 从文本创建文档 |
/datasets/{dataset_id}/document/create-by-file | POST | 从文件创建文档 |
/datasets/{dataset_id}/documents/{document_id}/update-by-text | POST | 通过文本更新文档 |
控制台 API
对于内部控制台使用,存在其他端点:
接口 | Method | 描述 |
---|---|---|
/console/datasets | 多种方式 | 控制台的数据集管理 |
/console/datasets/{dataset_id}/documents | 多种方式 | 文档管理 |
/console/datasets/{dataset_id}/documents/{document_id}/segments | 多种方式 | 段管理 |
速率限制和配额
该系统实施速率限制和配额执行,特别是在云部署中:
知识检索速率限制
对知识检索操作强制实施速率限制
# Simplified rate limiting logic
knowledge_rate_limit = FeatureService.get_knowledge_rate_limit(tenant_id)
if knowledge_rate_limit.enabled:
current_time = int(time.time() * 1000)
key = f"rate_limit_{tenant_id}"
redis_client.zadd(key, {current_time: current_time})
redis_client.zremrangebyscore(key, 0, current_time - 60000)
request_count = redis_client.zcard(key)
if request_count > knowledge_rate_limit.limit:
# Add rate limit record and return error
资源限制
对各种资源实施限制:
资源 | 描述 | 执行点 |
---|---|---|
向量空间 | 限制嵌入存储 | 在文档创建/索引期间 |
Documents | 限制文档数量 | 文档上传期间 |
知识率 | 限制检索频率 | 在知识检索过程中 |
总结
RAG 知识系统是 Dify 中用于知识索引和检索的综合解决方案。它提供了灵活的文档处理、索引技术和检索策略选项,使其能够适应各种用例。该系统的模块化架构允许与工作流和对话系统等其他组件无缝集成。
普通人如何抓住AI大模型的风口?
领取方式在文末
为什么要学习大模型?
目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。
目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!
最后
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
大模型全套学习资料领取
这里我整理了一份AI大模型入门到进阶全套学习包,包含学习路线+实战案例+视频+书籍PDF+面试题+DeepSeek部署包和技巧,需要的小伙伴文在下方免费领取哦,真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
四、LLM面试题
五、AI产品经理面试题
六、deepseek部署包+技巧大全
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~