从估计的本质矩阵和两幅图像中的对应点恢复相机之间的旋转和平移,使用光束法则进行检验。返回通过检验的内点数目。
#include <opencv2/calib3d.hpp>
int cv::recoverPose ( InputArray E,
InputArray points1,
InputArray points2,
InputArray cameraMatrix,
OutputArray R,
OutputArray t,
InputOutputArray mask = noArray()
)
int recoverPose( InputArray E, InputArray points1, InputArray points2,
OutputArray R, OutputArray t, double focal = 1.0,
Point2d pp = Point2d(0, 0), InputOutputArray mask = noArray() );
int recoverPose( InputArray E, InputArray points1, InputArray points2,
InputArray cameraMatrix, OutputArray R, OutputArray t,
double distanceThresh, InputOutputArray mask = noArray(),
OutputArray triangulatedPoints = noArray());
E:已经求解出来的本质矩阵,它是3x3的矩阵;
points1:第一张图片中的点;
points2:第二张图片中的点;
cameraMatrix:相机内参矩阵,它是3x3的矩阵;
R:求解出来的两帧图片之间的旋转矩阵;
t:求解出来的两帧图片之间的平移向量;
focal:相机焦距;
pp:像素坐标的原点;
distanceThresh:点的距离阈值,用来滤出距离较远的点;
triangulatedPoints:通过三角化还原点;
官方例子
// Example. Estimation of fundamental matrix using the RANSAC algorithm
int point_count = 100;
vector<Point2f> points1(point_count);
vector<Point2f> points2(point_count);
// initialize the points here ...
for( int i = 0; i < point_count; i++ )
{
points1[i] = ...;
points2[i] = ...;
}
// cametra matrix with both focal lengths = 1, and principal point = (0, 0)
Mat cameraMatrix = Mat::eye(3, 3, CV_64F);
Mat E, R, t, mask;
E = findEssentialMat(points1, points2, cameraMatrix, RANSAC, 0.999, 1.0, mask);
recoverPose(E, points1, points2, cameraMatrix, R, t, mask);
**说明: **
1. 通过该函数求解出来的 R , t R,t R,t ,它表示的是points1到points2的变换,也就是 R 21 R_{21} R21 , t 21 t_{21} t21
2.该函数求解出来的 R 21 R_{21} R21 , t 21 t_{21} t21,已经是最合适已经通过内部的代码去掉了另外三种错误的解
3. cv::recoverPose()中points1和points2的输入顺序,必须也要和求本质矩阵时对函数cv::findEssentialMat()输入的顺序相同。
4. 使用方法,可以直接包含对应的头文件,也可以直接将函数的内部实现拷贝也可以自己实现(vins),如下:
int recoverPose( InputArray E, InputArray _points1, InputArray _points2, InputArray _cameraMatrix,
OutputArray _R, OutputArray _t, InputOutputArray _mask)
{
Mat points1, points2, cameraMatrix;
_points1.getMat().convertTo(po

博客介绍了使用OpenCV从估计的本质矩阵和两幅图像对应点恢复相机旋转和平移的方法,通过光束法则检验并返回内点数目。还说明了函数输入参数,如本质矩阵、图像点、相机内参等,同时给出使用说明及使用方法。
最低0.47元/天 解锁文章
54

被折叠的 条评论
为什么被折叠?



