欢迎使用优快云-markdown编辑器

Markdown编辑器新体验
本文介绍了一款基于Markdown的编辑器,支持丰富的扩展功能如代码高亮、LaTeX公式、UML图表等,并具备离线写作及自动保存功能。

欢迎使用Markdown编辑器写博客

本Markdown编辑器使用StackEdit修改而来,用它写博客,将会带来全新的体验哦:

  • Markdown和扩展Markdown简洁的语法
  • 代码块高亮
  • 图片链接和图片上传
  • LaTex数学公式
  • UML序列图和流程图
  • 离线写博客
  • 导入导出Markdown文件
  • 丰富的快捷键

快捷键

  • 加粗 Ctrl + B
  • 斜体 Ctrl + I
  • 引用 Ctrl + Q
  • 插入链接 Ctrl + L
  • 插入代码 Ctrl + K
  • 插入图片 Ctrl + G
  • 提升标题 Ctrl + H
  • 有序列表 Ctrl + O
  • 无序列表 Ctrl + U
  • 横线 Ctrl + R
  • 撤销 Ctrl + Z
  • 重做 Ctrl + Y

Markdown及扩展

Markdown 是一种轻量级标记语言,它允许人们使用易读易写的纯文本格式编写文档,然后转换成格式丰富的HTML页面。 —— [ 维基百科 ]

使用简单的符号标识不同的标题,将某些文字标记为粗体或者斜体,创建一个链接等,详细语法参考帮助?。

本编辑器支持 Markdown Extra ,  扩展了很多好用的功能。具体请参考Github.

表格

Markdown Extra 表格语法:

项目价格
Computer$1600
Phone$12
Pipe$1

可以使用冒号来定义对齐方式:

项目价格数量
Computer1600 元5
Phone12 元12
Pipe1 元234

定义列表

Markdown Extra 定义列表语法: 项目1 项目2
定义 A
定义 B
项目3
定义 C

定义 D

定义D内容

代码块

代码块语法遵循标准markdown代码,例如:

@requires_authorization
def somefunc(param1='', param2=0):
    '''A docstring'''
    if param1 > param2: # interesting
        print 'Greater'
    return (param2 - param1 + 1) or None
class SomeClass:
    pass
>>> message = '''interpreter
... prompt'''

脚注

生成一个脚注1.

目录

[TOC]来生成目录:

数学公式

使用MathJax渲染LaTex 数学公式,详见math.stackexchange.com.

  • 行内公式,数学公式为: Γ(n)=(n1)!n
  • 块级公式:

x=b±b24ac2a

更多LaTex语法请参考 这儿.

UML 图:

可以渲染序列图:

Created with Raphaël 2.1.0 张三 张三 李四 李四 嘿,小四儿, 写博客了没? 李四愣了一下,说: 忙得吐血,哪有时间写。

或者流程图:

Created with Raphaël 2.1.0 开始 我的操作 确认? 结束 yes no
  • 关于 序列图 语法,参考 这儿,
  • 关于 流程图 语法,参考 这儿.

离线写博客

即使用户在没有网络的情况下,也可以通过本编辑器离线写博客(直接在曾经使用过的浏览器中输入write.blog.youkuaiyun.com/mdeditor即可。Markdown编辑器使用浏览器离线存储将内容保存在本地。

用户写博客的过程中,内容实时保存在浏览器缓存中,在用户关闭浏览器或者其它异常情况下,内容不会丢失。用户再次打开浏览器时,会显示上次用户正在编辑的没有发表的内容。

博客发表后,本地缓存将被删除。 

用户可以选择 把正在写的博客保存到服务器草稿箱,即使换浏览器或者清除缓存,内容也不会丢失。

注意:虽然浏览器存储大部分时候都比较可靠,但为了您的数据安全,在联网后,请务必及时发表或者保存到服务器草稿箱

浏览器兼容

  1. 目前,本编辑器对Chrome浏览器支持最为完整。建议大家使用较新版本的Chrome。
  2. IE9以下不支持
  3. IE9,10,11存在以下问题
    1. 不支持离线功能
    2. IE9不支持文件导入导出
    3. IE10不支持拖拽文件导入


  1. 这里是 脚注内容.
基于粒子群优化算法的p-Hub选址优化(Matlab代码实现)内容概要:本文介绍了基于粒子群优化算法(PSO)的p-Hub选址优化问题的研究与实现,重点利用Matlab进行算法编程和仿真。p-Hub选址是物流与交通网络中的关键问题,旨在通过确定最优的枢纽节点位置和非枢纽节点的分配方式,最小化网络总成本。文章详细阐述了粒子群算法的基本原理及其在解决组合优化问题中的适应性改进,结合p-Hub中转网络的特点构建数学模型,并通过Matlab代码实现算法流程,包括初始化、适应度计算、粒子更新与收敛判断等环节。同时可能涉及对算法参数设置、收敛性能及不同规模案例的仿真结果分析,以验证方法的有效性和鲁棒性。; 适合人群:具备一定Matlab编程基础和优化算法理论知识的高校研究生、科研人员及从事物流网络规划、交通系统设计等相关领域的工程技术人员。; 使用场景及目标:①解决物流、航空、通信等网络中的枢纽选址与路径优化问题;②学习并掌握粒子群算法在复杂组合优化问题中的建模与实现方法;③为相关科研项目或实际工程应用提供算法支持与代码参考。; 阅读建议:建议读者结合Matlab代码逐段理解算法实现逻辑,重点关注目标函数建模、粒子编码方式及约束处理策略,并尝试调整参数或拓展模型以加深对算法性能的理解。
内容概要:本文全面介绍了C#全栈开发的学习路径与资源体系,涵盖从基础语法到企业级实战的完整知识链条。内容包括C#官方交互式教程、开发环境搭建(Visual Studio、VS Code、Mono等),以及针对不同应用场景(如控制台、桌面、Web后端、跨平台、游戏、AI)的进阶学习指南。通过多个实战案例——如Windows Forms记事本、WPF学生管理系统、.NET MAUI跨平台动物图鉴、ASP.NET Core实时聊天系统及Unity 3D游戏项目——帮助开发者掌握核心技术栈与架构设计。同时列举了Stack Overflow、Power BI、王者荣耀后端等企业级应用案例,展示C#在高性能场景下的实际运用,并提供了高星开源项目(如SignalR、AutoMapper、Dapper)、生态工具链及一站式学习资源包,助力系统化学习与工程实践。; 适合人群:具备一定编程基础,工作1-3年的研发人员,尤其是希望转型全栈或深耕C#技术栈的开发者; 使用场景及目标:①系统掌握C#在不同领域的应用技术栈;②通过真实项目理解分层架构、MVVM、实时通信、异步处理等核心设计思想;③对接企业级开发标准,提升工程能力和实战水平; 阅读建议:此资源以开发简化版Spring学习其原理和内核,不仅是代码编写实现也更注重内容上的需求分析和方案设计,所以在学习的过程要结合这些内容一起来实践,并调试对应的代码。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值