- using System;
- using System.Collections.Generic;
- using System.Linq;
- using System.Text;
- namespace RSATest
- {
- public class BigInteger
- {
- // maximum length of the BigInteger in uint (4 bytes)
- // change this to suit the required level of precision.
- private const int maxLength = 70;
- // primes smaller than 2000 to test the generated prime number
- public static readonly int[] primesBelow2000 = {
- 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,
- 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199,
- 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293,
- 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397,
- 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499,
- 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599,
- 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691,
- 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797,
- 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887,
- 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997,
- 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097,
- 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193,
- 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297,
- 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399,
- 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499,
- 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597,
- 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699,
- 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789,
- 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889,
- 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999 };
- private uint[] data = null; // stores bytes from the Big Integer
- public int dataLength; // number of actual chars used
- //***********************************************************************
- // Constructor (Default value for BigInteger is 0
- //***********************************************************************
- public BigInteger()
- {
- data = new uint[maxLength];
- dataLength = 1;
- }
- //***********************************************************************
- // Constructor (Default value provided by long)
- //***********************************************************************
- public BigInteger(long value)
- {
- data = new uint[maxLength];
- long tempVal = value;
- // copy bytes from long to BigInteger without any assumption of
- // the length of the long datatype
- dataLength = 0;
- while (value != 0 && dataLength < maxLength)
- {
- data[dataLength] = (uint)(value & 0xFFFFFFFF);
- value >>= 32;
- dataLength++;
- }
- if (tempVal > 0) // overflow check for +ve value
- {
- if (value != 0 || (data[maxLength - 1] & 0x80000000) != 0)
- throw (new ArithmeticException("Positive overflow in constructor."));
- }
- else if (tempVal < 0) // underflow check for -ve value
- {
- if (value != -1 || (data[dataLength - 1] & 0x80000000) == 0)
- throw (new ArithmeticException("Negative underflow in constructor."));
- }
- if (dataLength == 0)
- dataLength = 1;
- }
- //***********************************************************************
- // Constructor (Default value provided by ulong)
- //***********************************************************************
- public BigInteger(ulong value)
- {
- data = new uint[maxLength];
- // copy bytes from ulong to BigInteger without any assumption of
- // the length of the ulong datatype
- dataLength = 0;
- while (value != 0 && dataLength < maxLength)
- {
- data[dataLength] = (uint)(value & 0xFFFFFFFF);
- value >>= 32;
- dataLength++;
- }
- if (value != 0 || (data[maxLength - 1] & 0x80000000) != 0)
- throw (new ArithmeticException("Positive overflow in constructor."));
- if (dataLength == 0)
- dataLength = 1;
- }
- //***********************************************************************
- // Constructor (Default value provided by BigInteger)
- //***********************************************************************
- public BigInteger(BigInteger bi)
- {
- data = new uint[maxLength];
- dataLength = bi.dataLength;
- for (int i = 0; i < dataLength; i++)
- data[i] = bi.data[i];
- }
- //***********************************************************************
- // Constructor (Default value provided by a string of digits of the
- // specified base)
- //
- // Example (base 10)
- // -----------------
- // To initialize "a" with the default value of 1234 in base 10
- // BigInteger a = new BigInteger("1234", 10)
- //
- // To initialize "a" with the default value of -1234
- // BigInteger a = new BigInteger("-1234", 10)
- //
- // Example (base 16)
- // -----------------
- // To initialize "a" with the default value of 0x1D4F in base 16
- // BigInteger a = new BigInteger("1D4F", 16)
- //
- // To initialize "a" with the default value of -0x1D4F
- // BigInteger a = new BigInteger("-1D4F", 16)
- //
- // Note that string values are specified in the <sign><magnitude>
- // format.
- //
- //***********************************************************************
- public BigInteger(string value, int radix)
- {
- BigInteger multiplier = new BigInteger(1);
- BigInteger result = new BigInteger();
- value = (value.ToUpper()).Trim();
- int limit = 0;
- if (value[0] == '-')
- limit = 1;
- for (int i = value.Length - 1; i >= limit; i--)
- {
- int posVal = (int)value[i];
- if (posVal >= '0' && posVal <= '9')
- posVal -= '0';
- else if (posVal >= 'A' && posVal <= 'Z')
- posVal = (posVal - 'A') + 10;
- else
- posVal = 9999999; // arbitrary large
- if (posVal >= radix)
- throw (new ArithmeticException("Invalid string in constructor."));
- else
- {
- if (value[0] == '-')
- posVal = -posVal;
- result = result + (multiplier * posVal);
- if ((i - 1) >= limit)
- multiplier = multiplier * radix;
- }
- }
- if (value[0] == '-') // negative values
- {
- if ((result.data[maxLength - 1] & 0x80000000) == 0)
- throw (new ArithmeticException("Negative underflow in constructor."));
- }
- else // positive values
- {
- if ((result.data[maxLength - 1] & 0x80000000) != 0)
- throw (new ArithmeticException("Positive overflow in constructor."));
- }
- data = new uint[maxLength];
- for (int i = 0; i < result.dataLength; i++)
- data[i] = result.data[i];
- dataLength = result.dataLength;
- }
- //***********************************************************************
- // Constructor (Default value provided by an array of bytes)
- //
- // The lowest index of the input byte array (i.e [0]) should contain the
- // most significant byte of the number, and the highest index should
- // contain the least significant byte.
- //
- // E.g.
- // To initialize "a" with the default value of 0x1D4F in base 16
- // byte[] temp = { 0x1D, 0x4F };
- // BigInteger a = new BigInteger(temp)
- //
- // Note that this method of initialization does not allow the
- // sign to be specified.
- //
- //***********************************************************************
- public BigInteger(byte[] inData)
- {
- dataLength = inData.Length >> 2;
- int leftOver = inData.Length & 0x3;
- if (leftOver != 0) // length not multiples of 4
- dataLength++;
- if (dataLength > maxLength)
- throw (new ArithmeticException("Byte overflow in constructor."));
- data = new uint[maxLength];
- for (int i = inData.Length - 1, j = 0; i >= 3; i -= 4, j++)
- {
- data[j] = (uint)((inData[i - 3] << 24) + (inData[i - 2] << 16) +
- (inData[i - 1] << 8) + inData[i]);
- }
- if (leftOver == 1)
- data[dataLength - 1] = (uint)inData[0];
- else if (leftOver == 2)
- data[dataLength - 1] = (uint)((inData[0] << 8) + inData[1]);
- else if (leftOver == 3)
- data[dataLength - 1] = (uint)((inData[0] << 16) + (inData[1] << 8) + inData[2]);
- while (dataLength > 1 && data[dataLength - 1] == 0)
- dataLength--;
- //Console.WriteLine("Len = " + dataLength);
- }
- //***********************************************************************
- // Constructor (Default value provided by an array of bytes of the
- // specified length.)
- //***********************************************************************
- public BigInteger(byte[] inData, int inLen)
- {
- dataLength = inLen >> 2;
- int leftOver = inLen & 0x3;
- if (leftOver != 0) // length not multiples of 4
- dataLength++;
- if (dataLength > maxLength || inLen > inData.Length)
- throw (new ArithmeticException("Byte overflow in constructor."));
- data = new uint[maxLength];
- for (int i = inLen - 1, j = 0; i >= 3; i -= 4, j++)
- {
- data[j] = (uint)((inData[i - 3] << 24) + (inData[i - 2] << 16) +
- (inData[i - 1] << 8) + inData[i]);
- }
- if (leftOver == 1)
- data[dataLength - 1] = (uint)inData[0];
- else if (leftOver == 2)
- data[dataLength - 1] = (uint)((inData[0] << 8) + inData[1]);
- else if (leftOver == 3)
- data[dataLength - 1] = (uint)((inData[0] << 16) + (inData[1] << 8) + inData[2]);
- if (dataLength == 0)
- dataLength = 1;
- while (dataLength > 1 && data[dataLength - 1] == 0)
- dataLength--;
- //Console.WriteLine("Len = " + dataLength);
- }
- //***********************************************************************
- // Constructor (Default value provided by an array of unsigned integers)
- //*********************************************************************
- public BigInteger(uint[] inData)
- {
- dataLength = inData.Length;
- if (dataLength > maxLength)
- throw (new ArithmeticException("Byte overflow in constructor."));
- data = new uint[maxLength];
- for (int i = dataLength - 1, j = 0; i >= 0; i--, j++)
- data[j] = inData[i];
- while (dataLength > 1 && data[dataLength - 1] == 0)
- dataLength--;
- //Console.WriteLine("Len = " + dataLength);
- }
- //***********************************************************************
- // Overloading of the typecast operator.
- // For BigInteger bi = 10;
- //***********************************************************************
- public static implicit operator BigInteger(long value)
- {
- return (new BigInteger(value));
- }
- public static implicit operator BigInteger(ulong value)
- {
- return (new BigInteger(value));
- }
- public static implicit operator BigInteger(int value)
- {
- return (new BigInteger((long)value));
- }
- public static implicit operator BigInteger(uint value)
- {
- return (new BigInteger((ulong)value));
- }
- //***********************************************************************
- // Overloading of addition operator
- //***********************************************************************
- public static BigInteger operator +(BigInteger bi1, BigInteger bi2)
- {
- BigInteger result = new BigInteger();
- result.dataLength = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength;
- long carry = 0;
- for (int i = 0; i < result.dataLength; i++)
- {
- long sum = (long)bi1.data[i] + (long)bi2.data[i] + carry;
- carry = sum >> 32;
- result.data[i] = (uint)(sum & 0xFFFFFFFF);
- }
- if (carry != 0 && result.dataLength < maxLength)
- {
- result.data[result.dataLength] = (uint)(carry);
- result.dataLength++;
- }
- while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
- result.dataLength--;
- // overflow check
- int lastPos = maxLength - 1;
- if ((bi1.data[lastPos] & 0x80000000) == (bi2.data[lastPos] & 0x80000000) &&
- (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000))
- {
- throw (new ArithmeticException());
- }
- return result;
- }
- //***********************************************************************
- // Overloading of the unary ++ operator
- //***********************************************************************
- public static BigInteger operator ++(BigInteger bi1)
- {
- BigInteger result = new BigInteger(bi1);
- long val, carry = 1;
- int index = 0;
- while (carry != 0 && index < maxLength)
- {
- val = (long)(result.data[index]);
- val++;
- result.data[index] = (uint)(val & 0xFFFFFFFF);
- carry = val >> 32;
- index++;
- }
- if (index > result.dataLength)
- result.dataLength = index;
- else
- {
- while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
- result.dataLength--;
- }
- // overflow check
- int lastPos = maxLength - 1;
- // overflow if initial value was +ve but ++ caused a sign
- // change to negative.
- if ((bi1.data[lastPos] & 0x80000000) == 0 &&
- (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000))
- {
- throw (new ArithmeticException("Overflow in ++."));
- }
- return result;
- }
- //***********************************************************************
- // Overloading of subtraction operator
- //***********************************************************************
- public static BigInteger operator -(BigInteger bi1, BigInteger bi2)
- {
- BigInteger result = new BigInteger();
- result.dataLength = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength;
- long carryIn = 0;
- for (int i = 0; i < result.dataLength; i++)
- {
- long diff;
- diff = (long)bi1.data[i] - (long)bi2.data[i] - carryIn;
- result.data[i] = (uint)(diff & 0xFFFFFFFF);
- if (diff < 0)
- carryIn = 1;
- else
- carryIn = 0;
- }
- // roll over to negative
- if (carryIn != 0)
- {
- for (int i = result.dataLength; i < maxLength; i++)
- result.data[i] = 0xFFFFFFFF;
- result.dataLength = maxLength;
- }
- // fixed in v1.03 to give correct datalength for a - (-b)
- while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
- result.dataLength--;
- // overflow check
- int lastPos = maxLength - 1;
- if ((bi1.data[lastPos] & 0x80000000) != (bi2.data[lastPos] & 0x80000000) &&
- (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000))
- {
- throw (new ArithmeticException());
- }
- return result;
- }
- //***********************************************************************
- // Overloading of the unary -- operator
- //***********************************************************************
- public static BigInteger operator --(BigInteger bi1)
- {
- BigInteger result = new BigInteger(bi1);
- long val;
- bool carryIn = true;
- int index = 0;
- while (carryIn && index < maxLength)
- {
- val = (long)(result.data[index]);
- val--;
- result.data[index] = (uint)(val & 0xFFFFFFFF);
- if (val >= 0)
- carryIn = false;
- index++;
- }
- if (index > result.dataLength)
- result.dataLength = index;
- while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
- result.dataLength--;
- // overflow check
- int lastPos = maxLength - 1;
- // overflow if initial value was -ve but -- caused a sign
- // change to positive.
- if ((bi1.data[lastPos] & 0x80000000) != 0 &&
- (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000))
- {
- throw (new ArithmeticException("Underflow in --."));
- }
- return result;
- }
- //***********************************************************************
- // Overloading of multiplication operator
- //***********************************************************************
- public static BigInteger operator *(BigInteger bi1, BigInteger bi2)
- {
- int lastPos = maxLength - 1;
- bool bi1Neg = false, bi2Neg = false;
- // take the absolute value of the inputs
- try
- {
- if ((bi1.data[lastPos] & 0x80000000) != 0) // bi1 negative
- {
- bi1Neg = true; bi1 = -bi1;
- }
- if ((bi2.data[lastPos] & 0x80000000) != 0) // bi2 negative
- {
- bi2Neg = true; bi2 = -bi2;
- }
- }
- catch (Exception) { }
- BigInteger result = new BigInteger();
- // multiply the absolute values
- try
- {
- for (int i = 0; i < bi1.dataLength; i++)
- {
- if (bi1.data[i] == 0) continue;
- ulong mcarry = 0;
- for (int j = 0, k = i; j < bi2.dataLength; j++, k++)
- {
- // k = i + j
- ulong val = ((ulong)bi1.data[i] * (ulong)bi2.data[j]) +
- (ulong)result.data[k] + mcarry;
- result.data[k] = (uint)(val & 0xFFFFFFFF);
- mcarry = (val >> 32);
- }
- if (mcarry != 0)
- result.data[i + bi2.dataLength] = (uint)mcarry;
- }
- }
- catch (Exception)
- {
- throw (new ArithmeticException("Multiplication overflow."));
- }
- result.dataLength = bi1.dataLength + bi2.dataLength;
- if (result.dataLength > maxLength)
- result.dataLength = maxLength;
- while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
- result.dataLength--;
- // overflow check (result is -ve)
- if ((result.data[lastPos] & 0x80000000) != 0)
- {
- if (bi1Neg != bi2Neg && result.data[lastPos] == 0x80000000) // different sign
- {
- // handle the special case where multiplication produces
- // a max negative number in 2's complement.
- if (result.dataLength == 1)
- return result;
- else
- {
- bool isMaxNeg = true;
- for (int i = 0; i < result.dataLength - 1 && isMaxNeg; i++)
- {
- if (result.data[i] != 0)
- isMaxNeg = false;
- }
- if (isMaxNeg)
- return result;
- }
- }
- throw (new ArithmeticException("Multiplication overflow."));
- }
- // if input has different signs, then result is -ve
- if (bi1Neg != bi2Neg)
- return -result;
- return result;
- }
- //***********************************************************************
- // Overloading of unary << operators
- //***********************************************************************
- public static BigInteger operator <<(BigInteger bi1, int shiftVal)
- {
- BigInteger result = new BigInteger(bi1);
- result.dataLength = shiftLeft(result.data, shiftVal);
- return result;
- }
- // least significant bits at lower part of buffer
- private static int shiftLeft(uint[] buffer, int shiftVal)
- {
- int shiftAmount = 32;
- int bufLen = buffer.Length;
- while (bufLen > 1 && buffer[bufLen - 1] == 0)
- bufLen--;
- for (int count = shiftVal; count > 0; )
- {
- if (count < shiftAmount)
- shiftAmount = count;
- //Console.WriteLine("shiftAmount = {0}", shiftAmount);
- ulong carry = 0;
- for (int i = 0; i < bufLen; i++)
- {
- ulong val = ((ulong)buffer[i]) << shiftAmount;
- val |= carry;
- buffer[i] = (uint)(val & 0xFFFFFFFF);
- carry = val >> 32;
- }
- if (carry != 0)
- {
- if (bufLen + 1 <= buffer.Length)
- {
- buffer[bufLen] = (uint)carry;
- bufLen++;
- }
- }
- count -= shiftAmount;
- }
- return bufLen;
- }
- //***********************************************************************
- // Overloading of unary >> operators
- //***********************************************************************
- public static BigInteger operator >>(BigInteger bi1, int shiftVal)
- {
- BigInteger result = new BigInteger(bi1);
- result.dataLength = shiftRight(result.data, shiftVal);
- if ((bi1.data[maxLength - 1] & 0x80000000) != 0) // negative
- {
- for (int i = maxLength - 1; i >= result.dataLength; i--)
- result.data[i] = 0xFFFFFFFF;
- uint mask = 0x80000000;
- for (int i = 0; i < 32; i++)
- {
- if ((result.data[result.dataLength - 1] & mask) != 0)
- break;
- result.data[result.dataLength - 1] |= mask;
- mask >>= 1;
- }
- result.dataLength = maxLength;
- }
- return result;
- }
- private static int shiftRight(uint[] buffer, int shiftVal)
- {
- int shiftAmount = 32;
- int invShift = 0;
- int bufLen = buffer.Length;
- while (bufLen > 1 && buffer[bufLen - 1] == 0)
- bufLen--;
- //Console.WriteLine("bufLen = " + bufLen + " buffer.Length = " + buffer.Length);
- for (int count = shiftVal; count > 0; )
- {
- if (count < shiftAmount)
- {
- shiftAmount = count;
- invShift = 32 - shiftAmount;
- }
- //Console.WriteLine("shiftAmount = {0}", shiftAmount);
- ulong carry = 0;
- for (int i = bufLen - 1; i >= 0; i--)
- {
- ulong val = ((ulong)buffer[i]) >> shiftAmount;
- val |= carry;
- carry = ((ulong)buffer[i]) << invShift;
- buffer[i] = (uint)(val);
- }
- count -= shiftAmount;
- }
- while (bufLen > 1 && buffer[bufLen - 1] == 0)
- bufLen--;
- return bufLen;
- }
- //***********************************************************************
- // Overloading of the NOT operator (1's complement)
- //***********************************************************************
- public static BigInteger operator ~(BigInteger bi1)
- {
- BigInteger result = new BigInteger(bi1);
- for (int i = 0; i < maxLength; i++)
- result.data[i] = (uint)(~(bi1.data[i]));
- result.dataLength = maxLength;
- while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
- result.dataLength--;
- return result;
- }
- //***********************************************************************
- // Overloading of the NEGATE operator (2's complement)
- //***********************************************************************
- public static BigInteger operator -(BigInteger bi1)
- {
- // handle neg of zero separately since it'll cause an overflow
- // if we proceed.
- if (bi1.dataLength == 1 && bi1.data[0] == 0)
- return (new BigInteger());
- BigInteger result = new BigInteger(bi1);
- // 1's complement
- for (int i = 0; i < maxLength; i++)
- result.data[i] = (uint)(~(bi1.data[i]));
- // add one to result of 1's complement
- long val, carry = 1;
- int index = 0;
- while (carry != 0 && index < maxLength)
- {
- val = (long)(result.data[index]);
- val++;
- result.data[index] = (uint)(val & 0xFFFFFFFF);
- carry = val >> 32;
- index++;
- }
- if ((bi1.data[maxLength - 1] & 0x80000000) == (result.data[maxLength - 1] & 0x80000000))
- throw (new ArithmeticException("Overflow in negation.\n"));
- result.dataLength = maxLength;
- while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
- result.dataLength--;
- return result;
- }
- //***********************************************************************
- // Overloading of equality operator
- //***********************************************************************
- public static bool operator ==(BigInteger bi1, BigInteger bi2)
- {
- return bi1.Equals(bi2);
- }
- public static bool operator !=(BigInteger bi1, BigInteger bi2)
- {
- return !(bi1.Equals(bi2));
- }
- public override bool Equals(object o)
- {
- BigInteger bi = (BigInteger)o;
- if (this.dataLength != bi.dataLength)
- return false;
- for (int i = 0; i < this.dataLength; i++)
- {
- if (this.data[i] != bi.data[i])
- return false;
- }
- return true;
- }
- public override int GetHashCode()
- {
- return this.ToString().GetHashCode();
- }
- //***********************************************************************
- // Overloading of inequality operator
- //***********************************************************************
- public static bool operator >(BigInteger bi1, BigInteger bi2)
- {
- int pos = maxLength - 1;
- // bi1 is negative, bi2 is positive
- if ((bi1.data[pos] & 0x80000000) != 0 && (bi2.data[pos] & 0x80000000) == 0)
- return false;
- // bi1 is positive, bi2 is negative
- else if ((bi1.data[pos] & 0x80000000) == 0 && (bi2.data[pos] & 0x80000000) != 0)
- return true;
- // same sign
- int len = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength;
- for (pos = len - 1; pos >= 0 && bi1.data[pos] == bi2.data[pos]; pos--) ;
- if (pos >= 0)
- {
- if (bi1.data[pos] > bi2.data[pos])
- return true;
- return false;
- }
- return false;
- }
- public static bool operator <(BigInteger bi1, BigInteger bi2)
- {
- int pos = maxLength - 1;
- // bi1 is negative, bi2 is positive
- if ((bi1.data[pos] & 0x80000000) != 0 && (bi2.data[pos] & 0x80000000) == 0)
- return true;
- // bi1 is positive, bi2 is negative
- else if ((bi1.data[pos] & 0x80000000) == 0 && (bi2.data[pos] & 0x80000000) != 0)
- return false;
- // same sign
- int len = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength;
- for (pos = len - 1; pos >= 0 && bi1.data[pos] == bi2.data[pos]; pos--) ;
- if (pos >= 0)
- {
- if (bi1.data[pos] < bi2.data[pos])
- return true;
- return false;
- }
- return false;
- }
- public static bool operator >=(BigInteger bi1, BigInteger bi2)
- {
- return (bi1 == bi2 || bi1 > bi2);
- }
- public static bool operator <=(BigInteger bi1, BigInteger bi2)
- {
- return (bi1 == bi2 || bi1 < bi2);
- }
- //***********************************************************************
- // Private function that supports the division of two numbers with
- // a divisor that has more than 1 digit.
- //
- // Algorithm taken from [1]
- //***********************************************************************
- private static void multiByteDivide(BigInteger bi1, BigInteger bi2,
- BigInteger outQuotient, BigInteger outRemainder)
- {
- uint[] result = new uint[maxLength];
- int remainderLen = bi1.dataLength + 1;
- uint[] remainder = new uint[remainderLen];
- uint mask = 0x80000000;
- uint val = bi2.data[bi2.dataLength - 1];
- int shift = 0, resultPos = 0;
- while (mask != 0 && (val & mask) == 0)
- {
- shift++; mask >>= 1;
- }
- //Console.WriteLine("shift = {0}", shift);
- //Console.WriteLine("Before bi1 Len = {0}, bi2 Len = {1}", bi1.dataLength, bi2.dataLength);
- for (int i = 0; i < bi1.dataLength; i++)
- remainder[i] = bi1.data[i];
- shiftLeft(remainder, shift);
- bi2 = bi2 << shift;
- /*
- Console.WriteLine("bi1 Len = {0}, bi2 Len = {1}", bi1.dataLength, bi2.dataLength);
- Console.WriteLine("dividend = " + bi1 + "\ndivisor = " + bi2);
- for(int q = remainderLen - 1; q >= 0; q--)
- Console.Write("{0:x2}", remainder[q]);
- Console.WriteLine();
- */
- int j = remainderLen - bi2.dataLength;
- int pos = remainderLen - 1;
- ulong firstDivisorByte = bi2.data[bi2.dataLength - 1];
- ulong secondDivisorByte = bi2.data[bi2.dataLength - 2];
- int divisorLen = bi2.dataLength + 1;
- uint[] dividendPart = new uint[divisorLen];
- while (j > 0)
- {
- ulong dividend = ((ulong)remainder[pos] << 32) + (ulong)remainder[pos - 1];
- //Console.WriteLine("dividend = {0}", dividend);
- ulong q_hat = dividend / firstDivisorByte;
- ulong r_hat = dividend % firstDivisorByte;
- //Console.WriteLine("q_hat = {0:X}, r_hat = {1:X}", q_hat, r_hat);
- bool done = false;
- while (!done)
- {
- done = true;
- if (q_hat == 0x100000000 ||
- (q_hat * secondDivisorByte) > ((r_hat << 32) + remainder[pos - 2]))
- {
- q_hat--;
- r_hat += firstDivisorByte;
- if (r_hat < 0x100000000)
- done = false;
- }
- }
- for (int h = 0; h < divisorLen; h++)
- dividendPart[h] = remainder[pos - h];
- BigInteger kk = new BigInteger(dividendPart);
- BigInteger ss = bi2 * (long)q_hat;
- //Console.WriteLine("ss before = " + ss);
- while (ss > kk)
- {
- q_hat--;
- ss -= bi2;
- //Console.WriteLine(ss);
- }
- BigInteger yy = kk - ss;
- //Console.WriteLine("ss = " + ss);
- //Console.WriteLine("kk = " + kk);
- //Console.WriteLine("yy = " + yy);
- for (int h = 0; h < divisorLen; h++)
- remainder[pos - h] = yy.data[bi2.dataLength - h];
- /*
- Console.WriteLine("dividend = ");
- for(int q = remainderLen - 1; q >= 0; q--)
- Console.Write("{0:x2}", remainder[q]);
- Console.WriteLine("\n************ q_hat = {0:X}\n", q_hat);
- */
- result[resultPos++] = (uint)q_hat;
- pos--;
- j--;
- }
- outQuotient.dataLength = resultPos;
- int y = 0;
- for (int x = outQuotient.dataLength - 1; x >= 0; x--, y++)
- outQuotient.data[y] = result[x];
- for (; y < maxLength; y++)
- outQuotient.data[y] = 0;
- while (outQuotient.dataLength > 1 && outQuotient.data[outQuotient.dataLength - 1] == 0)
- outQuotient.dataLength--;
- if (outQuotient.dataLength == 0)
- outQuotient.dataLength = 1;
- outRemainder.dataLength = shiftRight(remainder, shift);
- for (y = 0; y < outRemainder.dataLength; y++)
- outRemainder.data[y] = remainder[y];
- for (; y < maxLength; y++)
- outRemainder.data[y] = 0;
- }
- //***********************************************************************
- // Private function that supports the division of two numbers with
- // a divisor that has only 1 digit.
- //***********************************************************************
- private static void singleByteDivide(BigInteger bi1, BigInteger bi2,
- BigInteger outQuotient, BigInteger outRemainder)
- {
- uint[] result = new uint[maxLength];
- int resultPos = 0;
- // copy dividend to reminder
- for (int i = 0; i < maxLength; i++)
- outRemainder.data[i] = bi1.data[i];
- outRemainder.dataLength = bi1.dataLength;
- while (outRemainder.dataLength > 1 && outRemainder.data[outRemainder.dataLength - 1] == 0)
- outRemainder.dataLength--;
- ulong divisor = (ulong)bi2.data[0];
- int pos = outRemainder.dataLength - 1;
- ulong dividend = (ulong)outRemainder.data[pos];
- //Console.WriteLine("divisor = " + divisor + " dividend = " + dividend);
- //Console.WriteLine("divisor = " + bi2 + "\ndividend = " + bi1);
- if (dividend >= divisor)
- {
- ulong quotient = dividend / divisor;
- result[resultPos++] = (uint)quotient;
- outRemainder.data[pos] = (uint)(dividend % divisor);
- }
- pos--;
- while (pos >= 0)
- {
- //Console.WriteLine(pos);
- dividend = ((ulong)outRemainder.data[pos + 1] << 32) + (ulong)outRemainder.data[pos];
- ulong quotient = dividend / divisor;
- result[resultPos++] = (uint)quotient;
- outRemainder.data[pos + 1] = 0;
- outRemainder.data[pos--] = (uint)(dividend % divisor);
- //Console.WriteLine(">>>> " + bi1);
- }
- outQuotient.dataLength = resultPos;
- int j = 0;
- for (int i = outQuotient.dataLength - 1; i >= 0; i--, j++)
- outQuotient.data[j] = result[i];
- for (; j < maxLength; j++)
- outQuotient.data[j] = 0;
- while (outQuotient.dataLength > 1 && outQuotient.data[outQuotient.dataLength - 1] == 0)
- outQuotient.dataLength--;
- if (outQuotient.dataLength == 0)
- outQuotient.dataLength = 1;
- while (outRemainder.dataLength > 1 && outRemainder.data[outRemainder.dataLength - 1] == 0)
- outRemainder.dataLength--;
- }
- //***********************************************************************
- // Overloading of division operator
- //***********************************************************************
- public static BigInteger operator /(BigInteger bi1, BigInteger bi2)
- {
- BigInteger quotient = new BigInteger();
- BigInteger remainder = new BigInteger();
- int lastPos = maxLength - 1;
- bool divisorNeg = false, dividendNeg = false;
- if ((bi1.data[lastPos] & 0x80000000) != 0) // bi1 negative
- {
- bi1 = -bi1;
- dividendNeg = true;
- }
- if ((bi2.data[lastPos] & 0x80000000) != 0) // bi2 negative
- {
- bi2 = -bi2;
- divisorNeg = true;
- }
- if (bi1 < bi2)
- {
- return quotient;
- }
- else
- {
- if (bi2.dataLength == 1)
- singleByteDivide(bi1, bi2, quotient, remainder);
- else
- multiByteDivide(bi1, bi2, quotient, remainder);
- if (dividendNeg != divisorNeg)
- return -quotient;
- return quotient;
- }
- }
- //***********************************************************************
- // Overloading of modulus operator
- //***********************************************************************
- public static BigInteger operator %(BigInteger bi1, BigInteger bi2)
- {
- BigInteger quotient = new BigInteger();
- BigInteger remainder = new BigInteger(bi1);
- int lastPos = maxLength - 1;
- bool dividendNeg = false;
- if ((bi1.data[lastPos] & 0x80000000) != 0) // bi1 negative
- {
- bi1 = -bi1;
- dividendNeg = true;
- }
- if ((bi2.data[lastPos] & 0x80000000) != 0) // bi2 negative
- bi2 = -bi2;
- if (bi1 < bi2)
- {
- return remainder;
- }
- else
- {
- if (bi2.dataLength == 1)
- singleByteDivide(bi1, bi2, quotient, remainder);
- else
- multiByteDivide(bi1, bi2, quotient, remainder);
- if (dividendNeg)
- return -remainder;
- return remainder;
- }
- }
- //***********************************************************************
- // Overloading of bitwise AND operator
- //***********************************************************************
- public static BigInteger operator &(BigInteger bi1, BigInteger bi2)
- {
- BigInteger result = new BigInteger();
- int len = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength;
- for (int i = 0; i < len; i++)
- {
- uint sum = (uint)(bi1.data[i] & bi2.data[i]);
- result.data[i] = sum;
- }
- result.dataLength = maxLength;
- while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
- result.dataLength--;
- return result;
- }
- //***********************************************************************
- // Overloading of bitwise OR operator
- //***********************************************************************
- public static BigInteger operator |(BigInteger bi1, BigInteger bi2)
- {
- BigInteger result = new BigInteger();
- int len = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength;
- for (int i = 0; i < len; i++)
- {
- uint sum = (uint)(bi1.data[i] | bi2.data[i]);
- result.data[i] = sum;
- }
- result.dataLength = maxLength;
- while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
- result.dataLength--;
- return result;
- }
- //***********************************************************************
- // Overloading of bitwise XOR operator
- //***********************************************************************
- public static BigInteger operator ^(BigInteger bi1, BigInteger bi2)
- {
- BigInteger result = new BigInteger();
- int len = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength;
- for (int i = 0; i < len; i++)
- {
- uint sum = (uint)(bi1.data[i] ^ bi2.data[i]);
- result.data[i] = sum;
- }
- result.dataLength = maxLength;
- while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
- result.dataLength--;
- return result;
- }
- //***********************************************************************
- // Returns max(this, bi)
- //***********************************************************************
- public BigInteger max(BigInteger bi)
- {
- if (this > bi)
- return (new BigInteger(this));
- else
- return (new BigInteger(bi));
- }
- //***********************************************************************
- // Returns min(this, bi)
- //***********************************************************************
- public BigInteger min(BigInteger bi)
- {
- if (this < bi)
- return (new BigInteger(this));
- else
- return (new BigInteger(bi));
- }
- //***********************************************************************
- // Returns the absolute value
- //***********************************************************************
- public BigInteger abs()
- {
- if ((this.data[maxLength - 1] & 0x80000000) != 0)
- return (-this);
- else
- return (new BigInteger(this));
- }
- //***********************************************************************
- // Returns a string representing the BigInteger in base 10.
- //***********************************************************************
- public override string ToString()
- {
- return ToString(10);
- }
- //***********************************************************************
- // Returns a string representing the BigInteger in sign-and-magnitude
- // format in the specified radix.
- //
- // Example
- // -------
- // If the value of BigInteger is -255 in base 10, then
- // ToString(16) returns "-FF"
- //
- //***********************************************************************
- public string ToString(int radix)
- {
- if (radix < 2 || radix > 36)
- throw (new ArgumentException("Radix must be >= 2 and <= 36"));
- string charSet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
- string result = "";
- BigInteger a = this;
- bool negative = false;
- if ((a.data[maxLength - 1] & 0x80000000) != 0)
- {
- negative = true;
- try
- {
- a = -a;
- }
- catch (Exception) { }
- }
- BigInteger quotient = new BigInteger();
- BigInteger remainder = new BigInteger();
- BigInteger biRadix = new BigInteger(radix);
- if (a.dataLength == 1 && a.data[0] == 0)
- result = "0";
- else
- {
- while (a.dataLength > 1 || (a.dataLength == 1 && a.data[0] != 0))
- {
- singleByteDivide(a, biRadix, quotient, remainder);
- if (remainder.data[0] < 10)
- result = remainder.data[0] + result;
- else
- result = charSet[(int)remainder.data[0] - 10] + result;
- a = quotient;
- }
- if (negative)
- result = "-" + result;
- }
- return result;
- }
- //***********************************************************************
- // Returns a hex string showing the contains of the BigInteger
- //
- // Examples
- // -------
- // 1) If the value of BigInteger is 255 in base 10, then
- // ToHexString() returns "FF"
- //
- // 2) If the value of BigInteger is -255 in base 10, then
- // ToHexString() returns ".....FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF01",
- // which is the 2's complement representation of -255.
- //
- //***********************************************************************
- public string ToHexString()
- {
- string result = data[dataLength - 1].ToString("X");
- for (int i = dataLength - 2; i >= 0; i--)
- {
- result += data[i].ToString("X8");
- }
- return result;
- }
- //***********************************************************************
- // Modulo Exponentiation
- //***********************************************************************
- public BigInteger modPow(BigInteger exp, BigInteger n)
- {
- if ((exp.data[maxLength - 1] & 0x80000000) != 0)
- throw (new ArithmeticException("Positive exponents only."));
- BigInteger resultNum = 1;
- BigInteger tempNum;
- bool thisNegative = false;
- if ((this.data[maxLength - 1] & 0x80000000) != 0) // negative this
- {
- tempNum = -this % n;
- thisNegative = true;
- }
- else
- tempNum = this % n; // ensures (tempNum * tempNum) < b^(2k)
- if ((n.data[maxLength - 1] & 0x80000000) != 0) // negative n
- n = -n;
- // calculate constant = b^(2k) / m
- BigInteger constant = new BigInteger();
- int i = n.dataLength << 1;
- constant.data[i] = 0x00000001;
- constant.dataLength = i + 1;
- constant = constant / n;
- int totalBits = exp.bitCount();
- int count = 0;
- // perform squaring and multiply exponentiation
- for (int pos = 0; pos < exp.dataLength; pos++)
- {
- uint mask = 0x01;
- //Console.WriteLine("pos = " + pos);
- for (int index = 0; index < 32; index++)
- {
- if ((exp.data[pos] & mask) != 0)
- resultNum = BarrettReduction(resultNum * tempNum, n, constant);
- mask <<= 1;
- tempNum = BarrettReduction(tempNum * tempNum, n, constant);
- if (tempNum.dataLength == 1 && tempNum.data[0] == 1)
- {
- if (thisNegative && (exp.data[0] & 0x1) != 0) //odd exp
- return -resultNum;
- return resultNum;
- }
- count++;
- if (count == totalBits)
- break;
- }
- }
- if (thisNegative && (exp.data[0] & 0x1) != 0) //odd exp
- return -resultNum;
- return resultNum;
- }
- //***********************************************************************
- // Fast calculation of modular reduction using Barrett's reduction.
- // Requires x < b^(2k), where b is the base. In this case, base is
- // 2^32 (uint).
- //
- // Reference [4]
- //***********************************************************************
- private BigInteger BarrettReduction(BigInteger x, BigInteger n, BigInteger constant)
- {
- int k = n.dataLength,
- kPlusOne = k + 1,
- kMinusOne = k - 1;
- BigInteger q1 = new BigInteger();
- // q1 = x / b^(k-1)
- for (int i = kMinusOne, j = 0; i < x.dataLength; i++, j++)
- q1.data[j] = x.data[i];
- q1.dataLength = x.dataLength - kMinusOne;
- if (q1.dataLength <= 0)
- q1.dataLength = 1;
- BigInteger q2 = q1 * constant;
- BigInteger q3 = new BigInteger();
- // q3 = q2 / b^(k+1)
- for (int i = kPlusOne, j = 0; i < q2.dataLength; i++, j++)
- q3.data[j] = q2.data[i];
- q3.dataLength = q2.dataLength - kPlusOne;
- if (q3.dataLength <= 0)
- q3.dataLength = 1;
- // r1 = x mod b^(k+1)
- // i.e. keep the lowest (k+1) words
- BigInteger r1 = new BigInteger();
- int lengthToCopy = (x.dataLength > kPlusOne) ? kPlusOne : x.dataLength;
- for (int i = 0; i < lengthToCopy; i++)
- r1.data[i] = x.data[i];
- r1.dataLength = lengthToCopy;
- // r2 = (q3 * n) mod b^(k+1)
- // partial multiplication of q3 and n
- BigInteger r2 = new BigInteger();
- for (int i = 0; i < q3.dataLength; i++)
- {
- if (q3.data[i] == 0) continue;
- ulong mcarry = 0;
- int t = i;
- for (int j = 0; j < n.dataLength && t < kPlusOne; j++, t++)
- {
- // t = i + j
- ulong val = ((ulong)q3.data[i] * (ulong)n.data[j]) +
- (ulong)r2.data[t] + mcarry;
- r2.data[t] = (uint)(val & 0xFFFFFFFF);
- mcarry = (val >> 32);
- }
- if (t < kPlusOne)
- r2.data[t] = (uint)mcarry;
- }
- r2.dataLength = kPlusOne;
- while (r2.dataLength > 1 && r2.data[r2.dataLength - 1] == 0)
- r2.dataLength--;
- r1 -= r2;
- if ((r1.data[maxLength - 1] & 0x80000000) != 0) // negative
- {
- BigInteger val = new BigInteger();
- val.data[kPlusOne] = 0x00000001;
- val.dataLength = kPlusOne + 1;
- r1 += val;
- }
- while (r1 >= n)
- r1 -= n;
- return r1;
- }
- //***********************************************************************
- // Returns gcd(this, bi)
- //***********************************************************************
- public BigInteger gcd(BigInteger bi)
- {
- BigInteger x;
- BigInteger y;
- if ((data[maxLength - 1] & 0x80000000) != 0) // negative
- x = -this;
- else
- x = this;
- if ((bi.data[maxLength - 1] & 0x80000000) != 0) // negative
- y = -bi;
- else
- y = bi;
- BigInteger g = y;
- while (x.dataLength > 1 || (x.dataLength == 1 && x.data[0] != 0))
- {
- g = x;
- x = y % x;
- y = g;
- }
- return g;
- }
- //***********************************************************************
- // Populates "this" with the specified amount of random bits
- //***********************************************************************
- public void genRandomBits(int bits, Random rand)
- {
- int dwords = bits >> 5;
- int remBits = bits & 0x1F;
- if (remBits != 0)
- dwords++;
- if (dwords > maxLength)
- throw (new ArithmeticException("Number of required bits > maxLength."));
- for (int i = 0; i < dwords; i++)
- data[i] = (uint)(rand.NextDouble() * 0x100000000);
- for (int i = dwords; i < maxLength; i++)
- data[i] = 0;
- if (remBits != 0)
- {
- uint mask = (uint)(0x01 << (remBits - 1));
- data[dwords - 1] |= mask;
- mask = (uint)(0xFFFFFFFF >> (32 - remBits));
- data[dwords - 1] &= mask;
- }
- else
- data[dwords - 1] |= 0x80000000;
- dataLength = dwords;
- if (dataLength == 0)
- dataLength = 1;
- }
- //***********************************************************************
- // Returns the position of the most significant bit in the BigInteger.
- //
- // Eg. The result is 0, if the value of BigInteger is 0...0000 0000
- // The result is 1, if the value of BigInteger is 0...0000 0001
- // The result is 2, if the value of BigInteger is 0...0000 0010
- // The result is 2, if the value of BigInteger is 0...0000 0011
- //
- //***********************************************************************
- public int bitCount()
- {
- while (dataLength > 1 && data[dataLength - 1] == 0)
- dataLength--;
- uint value = data[dataLength - 1];
- uint mask = 0x80000000;
- int bits = 32;
- while (bits > 0 && (value & mask) == 0)
- {
- bits--;
- mask >>= 1;
- }
- bits += ((dataLength - 1) << 5);
- return bits;
- }
- //***********************************************************************
- // Probabilistic prime test based on Fermat's little theorem
- //
- // for any a < p (p does not divide a) if
- // a^(p-1) mod p != 1 then p is not prime.
- //
- // Otherwise, p is probably prime (pseudoprime to the chosen base).
- //
- // Returns
- // -------
- // True if "this" is a pseudoprime to randomly chosen
- // bases. The number of chosen bases is given by the "confidence"
- // parameter.
- //
- // False if "this" is definitely NOT prime.
- //
- // Note - this method is fast but fails for Carmichael numbers except
- // when the randomly chosen base is a factor of the number.
- //
- //***********************************************************************
- public bool FermatLittleTest(int confidence)
- {
- BigInteger thisVal;
- if ((this.data[maxLength - 1] & 0x80000000) != 0) // negative
- thisVal = -this;
- else
- thisVal = this;
- if (thisVal.dataLength == 1)
- {
- // test small numbers
- if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
- return false;
- else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
- return true;
- }
- if ((thisVal.data[0] & 0x1) == 0) // even numbers
- return false;
- int bits = thisVal.bitCount();
- BigInteger a = new BigInteger();
- BigInteger p_sub1 = thisVal - (new BigInteger(1));
- Random rand = new Random();
- for (int round = 0; round < confidence; round++)
- {
- bool done = false;
- while (!done) // generate a < n
- {
- int testBits = 0;
- // make sure "a" has at least 2 bits
- while (testBits < 2)
- testBits = (int)(rand.NextDouble() * bits);
- a.genRandomBits(testBits, rand);
- int byteLen = a.dataLength;
- // make sure "a" is not 0
- if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
- done = true;
- }
- // check whether a factor exists (fix for version 1.03)
- BigInteger gcdTest = a.gcd(thisVal);
- if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
- return false;
- // calculate a^(p-1) mod p
- BigInteger expResult = a.modPow(p_sub1, thisVal);
- int resultLen = expResult.dataLength;
- // is NOT prime is a^(p-1) mod p != 1
- if (resultLen > 1 || (resultLen == 1 && expResult.data[0] != 1))
- {
- //Console.WriteLine("a = " + a.ToString());
- return false;
- }
- }
- return true;
- }
- //***********************************************************************
- // Probabilistic prime test based on Rabin-Miller's
- //
- // for any p > 0 with p - 1 = 2^s * t
- //
- // p is probably prime (strong pseudoprime) if for any a < p,
- // 1) a^t mod p = 1 or
- // 2) a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
- //
- // Otherwise, p is composite.
- //
- // Returns
- // -------
- // True if "this" is a strong pseudoprime to randomly chosen
- // bases. The number of chosen bases is given by the "confidence"
- // parameter.
- //
- // False if "this" is definitely NOT prime.
- //
- //***********************************************************************
- public bool RabinMillerTest(int confidence)
- {
- BigInteger thisVal;
- if ((this.data[maxLength - 1] & 0x80000000) != 0) // negative
- thisVal = -this;
- else
- thisVal = this;
- if (thisVal.dataLength == 1)
- {
- // test small numbers
- if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
- return false;
- else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
- return true;
- }
- if ((thisVal.data[0] & 0x1) == 0) // even numbers
- return false;
- // calculate values of s and t
- BigInteger p_sub1 = thisVal - (new BigInteger(1));
- int s = 0;
- for (int index = 0; index < p_sub1.dataLength; index++)
- {
- uint mask = 0x01;
- for (int i = 0; i < 32; i++)
- {
- if ((p_sub1.data[index] & mask) != 0)
- {
- index = p_sub1.dataLength; // to break the outer loop
- break;
- }
- mask <<= 1;
- s++;
- }
- }
- BigInteger t = p_sub1 >> s;
- int bits = thisVal.bitCount();
- BigInteger a = new BigInteger();
- Random rand = new Random();
- for (int round = 0; round < confidence; round++)
- {
- bool done = false;
- while (!done) // generate a < n
- {
- int testBits = 0;
- // make sure "a" has at least 2 bits
- while (testBits < 2)
- testBits = (int)(rand.NextDouble() * bits);
- a.genRandomBits(testBits, rand);
- int byteLen = a.dataLength;
- // make sure "a" is not 0
- if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
- done = true;
- }
- // check whether a factor exists (fix for version 1.03)
- BigInteger gcdTest = a.gcd(thisVal);
- if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
- return false;
- BigInteger b = a.modPow(t, thisVal);
- /*
- Console.WriteLine("a = " + a.ToString(10));
- Console.WriteLine("b = " + b.ToString(10));
- Console.WriteLine("t = " + t.ToString(10));
- Console.WriteLine("s = " + s);
- */
- bool result = false;
- if (b.dataLength == 1 && b.data[0] == 1) // a^t mod p = 1
- result = true;
- for (int j = 0; result == false && j < s; j++)
- {
- if (b == p_sub1) // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
- {
- result = true;
- break;
- }
- b = (b * b) % thisVal;
- }
- if (result == false)
- return false;
- }
- return true;
- }
- //***********************************************************************
- // Probabilistic prime test based on Solovay-Strassen (Euler Criterion)
- //
- // p is probably prime if for any a < p (a is not multiple of p),
- // a^((p-1)/2) mod p = J(a, p)
- //
- // where J is the Jacobi symbol.
- //
- // Otherwise, p is composite.
- //
- // Returns
- // -------
- // True if "this" is a Euler pseudoprime to randomly chosen
- // bases. The number of chosen bases is given by the "confidence"
- // parameter.
- //
- // False if "this" is definitely NOT prime.
- //
- //***********************************************************************
- public bool SolovayStrassenTest(int confidence)
- {
- BigInteger thisVal;
- if ((this.data[maxLength - 1] & 0x80000000) != 0) // negative
- thisVal = -this;
- else
- thisVal = this;
- if (thisVal.dataLength == 1)
- {
- // test small numbers
- if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
- return false;
- else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
- return true;
- }
- if ((thisVal.data[0] & 0x1) == 0) // even numbers
- return false;
- int bits = thisVal.bitCount();
- BigInteger a = new BigInteger();
- BigInteger p_sub1 = thisVal - 1;
- BigInteger p_sub1_shift = p_sub1 >> 1;
- Random rand = new Random();
- for (int round = 0; round < confidence; round++)
- {
- bool done = false;
- while (!done) // generate a < n
- {
- int testBits = 0;
- // make sure "a" has at least 2 bits
- while (testBits < 2)
- testBits = (int)(rand.NextDouble() * bits);
- a.genRandomBits(testBits, rand);
- int byteLen = a.dataLength;
- // make sure "a" is not 0
- if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
- done = true;
- }
- // check whether a factor exists (fix for version 1.03)
- BigInteger gcdTest = a.gcd(thisVal);
- if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
- return false;
- // calculate a^((p-1)/2) mod p
- BigInteger expResult = a.modPow(p_sub1_shift, thisVal);
- if (expResult == p_sub1)
- expResult = -1;
- // calculate Jacobi symbol
- BigInteger jacob = Jacobi(a, thisVal);
- //Console.WriteLine("a = " + a.ToString(10) + " b = " + thisVal.ToString(10));
- //Console.WriteLine("expResult = " + expResult.ToString(10) + " Jacob = " + jacob.ToString(10));
- // if they are different then it is not prime
- if (expResult != jacob)
- return false;
- }
- return true;
- }
- //***********************************************************************
- // Implementation of the Lucas Strong Pseudo Prime test.
- //
- // Let n be an odd number with gcd(n,D) = 1, and n - J(D, n) = 2^s * d
- // with d odd and s >= 0.
- //
- // If Ud mod n = 0 or V2^r*d mod n = 0 for some 0 <= r < s, then n
- // is a strong Lucas pseudoprime with parameters (P, Q). We select
- // P and Q based on Selfridge.
- //
- // Returns True if number is a strong Lucus pseudo prime.
- // Otherwise, returns False indicating that number is composite.
- //***********************************************************************
- public bool LucasStrongTest()
- {
- BigInteger thisVal;
- if ((this.data[maxLength - 1] & 0x80000000) != 0) // negative
- thisVal = -this;
- else
- thisVal = this;
- if (thisVal.dataLength == 1)
- {
- // test small numbers
- if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
- return false;
- else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
- return true;
- }
- if ((thisVal.data[0] & 0x1) == 0) // even numbers
- return false;
- return LucasStrongTestHelper(thisVal);
- }
- private bool LucasStrongTestHelper(BigInteger thisVal)
- {
- // Do the test (selects D based on Selfridge)
- // Let D be the first element of the sequence
- // 5, -7, 9, -11, 13, ... for which J(D,n) = -1
- // Let P = 1, Q = (1-D) / 4
- long D = 5, sign = -1, dCount = 0;
- bool done = false;
- while (!done)
- {
- int Jresult = BigInteger.Jacobi(D, thisVal);
- if (Jresult == -1)
- done = true; // J(D, this) = 1
- else
- {
- if (Jresult == 0 && Math.Abs(D) < thisVal) // divisor found
- return false;
- if (dCount == 20)
- {
- // check for square
- BigInteger root = thisVal.sqrt();
- if (root * root == thisVal)
- return false;
- }
- //Console.WriteLine(D);
- D = (Math.Abs(D) + 2) * sign;
- sign = -sign;
- }
- dCount++;
- }
- long Q = (1 - D) >> 2;
- /*
- Console.WriteLine("D = " + D);
- Console.WriteLine("Q = " + Q);
- Console.WriteLine("(n,D) = " + thisVal.gcd(D));
- Console.WriteLine("(n,Q) = " + thisVal.gcd(Q));
- Console.WriteLine("J(D|n) = " + BigInteger.Jacobi(D, thisVal));
- */
- BigInteger p_add1 = thisVal + 1;
- int s = 0;
- for (int index = 0; index < p_add1.dataLength; index++)
- {
- uint mask = 0x01;
- for (int i = 0; i < 32; i++)
- {
- if ((p_add1.data[index] & mask) != 0)
- {
- index = p_add1.dataLength; // to break the outer loop
- break;
- }
- mask <<= 1;
- s++;
- }
- }
- BigInteger t = p_add1 >> s;
- // calculate constant = b^(2k) / m
- // for Barrett Reduction
- BigInteger constant = new BigInteger();
- int nLen = thisVal.dataLength << 1;
- constant.data[nLen] = 0x00000001;
- constant.dataLength = nLen + 1;
- constant = constant / thisVal;
- BigInteger[] lucas = LucasSequenceHelper(1, Q, t, thisVal, constant, 0);
- bool isPrime = false;
- if ((lucas[0].dataLength == 1 && lucas[0].data[0] == 0) ||
- (lucas[1].dataLength == 1 && lucas[1].data[0] == 0))
- {
- // u(t) = 0 or V(t) = 0
- isPrime = true;
- }
- for (int i = 1; i < s; i++)
- {
- if (!isPrime)
- {
- // doubling of index
- lucas[1] = thisVal.BarrettReduction(lucas[1] * lucas[1], thisVal, constant);
- lucas[1] = (lucas[1] - (lucas[2] << 1)) % thisVal;
- //lucas[1] = ((lucas[1] * lucas[1]) - (lucas[2] << 1)) % thisVal;
- if ((lucas[1].dataLength == 1 && lucas[1].data[0] == 0))
- isPrime = true;
- }
- lucas[2] = thisVal.BarrettReduction(lucas[2] * lucas[2], thisVal, constant); //Q^k
- }
- if (isPrime) // additional checks for composite numbers
- {
- // If n is prime and gcd(n, Q) == 1, then
- // Q^((n+1)/2) = Q * Q^((n-1)/2) is congruent to (Q * J(Q, n)) mod n
- BigInteger g = thisVal.gcd(Q);
- if (g.dataLength == 1 && g.data[0] == 1) // gcd(this, Q) == 1
- {
- if ((lucas[2].data[maxLength - 1] & 0x80000000) != 0)
- lucas[2] += thisVal;
- BigInteger temp = (Q * BigInteger.Jacobi(Q, thisVal)) % thisVal;
- if ((temp.data[maxLength - 1] & 0x80000000) != 0)
- temp += thisVal;
- if (lucas[2] != temp)
- isPrime = false;
- }
- }
- return isPrime;
- }
- //***********************************************************************
- // Determines whether a number is probably prime, using the Rabin-Miller's
- // test. Before applying the test, the number is tested for divisibility
- // by primes < 2000
- //
- // Returns true if number is probably prime.
- //***********************************************************************
- public bool isProbablePrime(int confidence)
- {
- BigInteger thisVal;
- if ((this.data[maxLength - 1] & 0x80000000) != 0) // negative
- thisVal = -this;
- else
- thisVal = this;
- // test for divisibility by primes < 2000
- for (int p = 0; p < primesBelow2000.Length; p++)
- {
- BigInteger divisor = primesBelow2000[p];
- if (divisor >= thisVal)
- break;
- BigInteger resultNum = thisVal % divisor;
- if (resultNum.IntValue() == 0)
- {
- /*
- Console.WriteLine("Not prime! Divisible by {0}\n",
- primesBelow2000[p]);
- */
- return false;
- }
- }
- if (thisVal.RabinMillerTest(confidence))
- return true;
- else
- {
- //Console.WriteLine("Not prime! Failed primality test\n");
- return false;
- }
- }
- //***********************************************************************
- // Determines whether this BigInteger is probably prime using a
- // combination of base 2 strong pseudoprime test and Lucas strong
- // pseudoprime test.
- //
- // The sequence of the primality test is as follows,
- //
- // 1) Trial divisions are carried out using prime numbers below 2000.
- // if any of the primes divides this BigInteger, then it is not prime.
- //
- // 2) Perform base 2 strong pseudoprime test. If this BigInteger is a
- // base 2 strong pseudoprime, proceed on to the next step.
- //
- // 3) Perform strong Lucas pseudoprime test.
- //
- // Returns True if this BigInteger is both a base 2 strong pseudoprime
- // and a strong Lucas pseudoprime.
- //
- // For a detailed discussion of this primality test, see [6].
- //
- //***********************************************************************
- public bool isProbablePrime()
- {
- BigInteger thisVal;
- if ((this.data[maxLength - 1] & 0x80000000) != 0) // negative
- thisVal = -this;
- else
- thisVal = this;
- if (thisVal.dataLength == 1)
- {
- // test small numbers
- if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
- return false;
- else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
- return true;
- }
- if ((thisVal.data[0] & 0x1) == 0) // even numbers
- return false;
- // test for divisibility by primes < 2000
- for (int p = 0; p < primesBelow2000.Length; p++)
- {
- BigInteger divisor = primesBelow2000[p];
- if (divisor >= thisVal)
- break;
- BigInteger resultNum = thisVal % divisor;
- if (resultNum.IntValue() == 0)
- {
- //Console.WriteLine("Not prime! Divisible by {0}\n",
- // primesBelow2000[p]);
- return false;
- }
- }
- // Perform BASE 2 Rabin-Miller Test
- // calculate values of s and t
- BigInteger p_sub1 = thisVal - (new BigInteger(1));
- int s = 0;
- for (int index = 0; index < p_sub1.dataLength; index++)
- {
- uint mask = 0x01;
- for (int i = 0; i < 32; i++)
- {
- if ((p_sub1.data[index] & mask) != 0)
- {
- index = p_sub1.dataLength; // to break the outer loop
- break;
- }
- mask <<= 1;
- s++;
- }
- }
- BigInteger t = p_sub1 >> s;
- int bits = thisVal.bitCount();
- BigInteger a = 2;
- // b = a^t mod p
- BigInteger b = a.modPow(t, thisVal);
- bool result = false;
- if (b.dataLength == 1 && b.data[0] == 1) // a^t mod p = 1
- result = true;
- for (int j = 0; result == false && j < s; j++)
- {
- if (b == p_sub1) // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
- {
- result = true;
- break;
- }
- b = (b * b) % thisVal;
- }
- // if number is strong pseudoprime to base 2, then do a strong lucas test
- if (result)
- result = LucasStrongTestHelper(thisVal);
- return result;
- }
- //***********************************************************************
- // Returns the lowest 4 bytes of the BigInteger as an int.
- //***********************************************************************
- public int IntValue()
- {
- return (int)data[0];
- }
- //***********************************************************************
- // Returns the lowest 8 bytes of the BigInteger as a long.
- //***********************************************************************
- public long LongValue()
- {
- long val = 0;
- val = (long)data[0];
- try
- { // exception if maxLength = 1
- val |= (long)data[1] << 32;
- }
- catch (Exception)
- {
- if ((data[0] & 0x80000000) != 0) // negative
- val = (int)data[0];
- }
- return val;
- }
- //***********************************************************************
- // Computes the Jacobi Symbol for a and b.
- // Algorithm adapted from [3] and [4] with some optimizations
- //***********************************************************************
- public static int Jacobi(BigInteger a, BigInteger b)
- {
- // Jacobi defined only for odd integers
- if ((b.data[0] & 0x1) == 0)
- throw (new ArgumentException("Jacobi defined only for odd integers."));
- if (a >= b) a %= b;
- if (a.dataLength == 1 && a.data[0] == 0) return 0; // a == 0
- if (a.dataLength == 1 && a.data[0] == 1) return 1; // a == 1
- if (a < 0)
- {
- if ((((b - 1).data[0]) & 0x2) == 0) //if( (((b-1) >> 1).data[0] & 0x1) == 0)
- return Jacobi(-a, b);
- else
- return -Jacobi(-a, b);
- }
- int e = 0;
- for (int index = 0; index < a.dataLength; index++)
- {
- uint mask = 0x01;
- for (int i = 0; i < 32; i++)
- {
- if ((a.data[index] & mask) != 0)
- {
- index = a.dataLength; // to break the outer loop
- break;
- }
- mask <<= 1;
- e++;
- }
- }
- BigInteger a1 = a >> e;
- int s = 1;
- if ((e & 0x1) != 0 && ((b.data[0] & 0x7) == 3 || (b.data[0] & 0x7) == 5))
- s = -1;
- if ((b.data[0] & 0x3) == 3 && (a1.data[0] & 0x3) == 3)
- s = -s;
- if (a1.dataLength == 1 && a1.data[0] == 1)
- return s;
- else
- return (s * Jacobi(b % a1, a1));
- }
- //***********************************************************************
- // Generates a positive BigInteger that is probably prime.
- //***********************************************************************
- public static BigInteger genPseudoPrime(int bits, int confidence, Random rand)
- {
- BigInteger result = new BigInteger();
- bool done = false;
- while (!done)
- {
- result.genRandomBits(bits, rand);
- result.data[0] |= 0x01; // make it odd
- // prime test
- done = result.isProbablePrime(confidence);
- }
- return result;
- }
- //***********************************************************************
- // Generates a random number with the specified number of bits such
- // that gcd(number, this) = 1
- //***********************************************************************
- public BigInteger genCoPrime(int bits, Random rand)
- {
- bool done = false;
- BigInteger result = new BigInteger();
- while (!done)
- {
- result.genRandomBits(bits, rand);
- //Console.WriteLine(result.ToString(16));
- // gcd test
- BigInteger g = result.gcd(this);
- if (g.dataLength == 1 && g.data[0] == 1)
- done = true;
- }
- return result;
- }
- //***********************************************************************
- // Returns the modulo inverse of this. Throws ArithmeticException if
- // the inverse does not exist. (i.e. gcd(this, modulus) != 1)
- //***********************************************************************
- public BigInteger modInverse(BigInteger modulus)
- {
- BigInteger[] p = { 0, 1 };
- BigInteger[] q = new BigInteger[2]; // quotients
- BigInteger[] r = { 0, 0 }; // remainders
- int step = 0;
- BigInteger a = modulus;
- BigInteger b = this;
- while (b.dataLength > 1 || (b.dataLength == 1 && b.data[0] != 0))
- {
- BigInteger quotient = new BigInteger();
- BigInteger remainder = new BigInteger();
- if (step > 1)
- {
- BigInteger pval = (p[0] - (p[1] * q[0])) % modulus;
- p[0] = p[1];
- p[1] = pval;
- }
- if (b.dataLength == 1)
- singleByteDivide(a, b, quotient, remainder);
- else
- multiByteDivide(a, b, quotient, remainder);
- /*
- Console.WriteLine(quotient.dataLength);
- Console.WriteLine("{0} = {1}({2}) + {3} p = {4}", a.ToString(10),
- b.ToString(10), quotient.ToString(10), remainder.ToString(10),
- p[1].ToString(10));
- */
- q[0] = q[1];
- r[0] = r[1];
- q[1] = quotient; r[1] = remainder;
- a = b;
- b = remainder;
- step++;
- }
- if (r[0].dataLength > 1 || (r[0].dataLength == 1 && r[0].data[0] != 1))
- throw (new ArithmeticException("No inverse!"));
- BigInteger result = ((p[0] - (p[1] * q[0])) % modulus);
- if ((result.data[maxLength - 1] & 0x80000000) != 0)
- result += modulus; // get the least positive modulus
- return result;
- }
- //***********************************************************************
- // Returns the value of the BigInteger as a byte array. The lowest
- // index contains the MSB.
- //***********************************************************************
- public byte[] getBytes()
- {
- int numBits = bitCount();
- int numBytes = numBits >> 3;
- if ((numBits & 0x7) != 0)
- numBytes++;
- byte[] result = new byte[numBytes];
- //Console.WriteLine(result.Length);
- int pos = 0;
- uint tempVal, val = data[dataLength - 1];
- if ((tempVal = (val >> 24 & 0xFF)) != 0)
- result[pos++] = (byte)tempVal;
- if ((tempVal = (val >> 16 & 0xFF)) != 0)
- result[pos++] = (byte)tempVal;
- if ((tempVal = (val >> 8 & 0xFF)) != 0)
- result[pos++] = (byte)tempVal;
- if ((tempVal = (val & 0xFF)) != 0)
- result[pos++] = (byte)tempVal;
- for (int i = dataLength - 2; i >= 0; i--, pos += 4)
- {
- val = data[i];
- result[pos + 3] = (byte)(val & 0xFF);
- val >>= 8;
- result[pos + 2] = (byte)(val & 0xFF);
- val >>= 8;
- result[pos + 1] = (byte)(val & 0xFF);
- val >>= 8;
- result[pos] = (byte)(val & 0xFF);
- }
- return result;
- }
- //***********************************************************************
- // Sets the value of the specified bit to 1
- // The Least Significant Bit position is 0.
- //***********************************************************************
- public void setBit(uint bitNum)
- {
- uint bytePos = bitNum >> 5; // divide by 32
- byte bitPos = (byte)(bitNum & 0x1F); // get the lowest 5 bits
- uint mask = (uint)1 << bitPos;
- this.data[bytePos] |= mask;
- if (bytePos >= this.dataLength)
- this.dataLength = (int)bytePos + 1;
- }
- //***********************************************************************
- // Sets the value of the specified bit to 0
- // The Least Significant Bit position is 0.
- //***********************************************************************
- public void unsetBit(uint bitNum)
- {
- uint bytePos = bitNum >> 5;
- if (bytePos < this.dataLength)
- {
- byte bitPos = (byte)(bitNum & 0x1F);
- uint mask = (uint)1 << bitPos;
- uint mask2 = 0xFFFFFFFF ^ mask;
- this.data[bytePos] &= mask2;
- if (this.dataLength > 1 && this.data[this.dataLength - 1] == 0)
- this.dataLength--;
- }
- }
- //***********************************************************************
- // Returns a value that is equivalent to the integer square root
- // of the BigInteger.
- //
- // The integer square root of "this" is defined as the largest integer n
- // such that (n * n) <= this
- //
- //***********************************************************************
- public BigInteger sqrt()
- {
- uint numBits = (uint)this.bitCount();
- if ((numBits & 0x1) != 0) // odd number of bits
- numBits = (numBits >> 1) + 1;
- else
- numBits = (numBits >> 1);
- uint bytePos = numBits >> 5;
- byte bitPos = (byte)(numBits & 0x1F);
- uint mask;
- BigInteger result = new BigInteger();
- if (bitPos == 0)
- mask = 0x80000000;
- else
- {
- mask = (uint)1 << bitPos;
- bytePos++;
- }
- result.dataLength = (int)bytePos;
- for (int i = (int)bytePos - 1; i >= 0; i--)
- {
- while (mask != 0)
- {
- // guess
- result.data[i] ^= mask;
- // undo the guess if its square is larger than this
- if ((result * result) > this)
- result.data[i] ^= mask;
- mask >>= 1;
- }
- mask = 0x80000000;
- }
- return result;
- }
- //***********************************************************************
- // Returns the k_th number in the Lucas Sequence reduced modulo n.
- //
- // Uses index doubling to speed up the process. For example, to calculate V(k),
- // we maintain two numbers in the sequence V(n) and V(n+1).
- //
- // To obtain V(2n), we use the identity
- // V(2n) = (V(n) * V(n)) - (2 * Q^n)
- // To obtain V(2n+1), we first write it as
- // V(2n+1) = V((n+1) + n)
- // and use the identity
- // V(m+n) = V(m) * V(n) - Q * V(m-n)
- // Hence,
- // V((n+1) + n) = V(n+1) * V(n) - Q^n * V((n+1) - n)
- // = V(n+1) * V(n) - Q^n * V(1)
- // = V(n+1) * V(n) - Q^n * P
- //
- // We use k in its binary expansion and perform index doubling for each
- // bit position. For each bit position that is set, we perform an
- // index doubling followed by an index addition. This means that for V(n),
- // we need to update it to V(2n+1). For V(n+1), we need to update it to
- // V((2n+1)+1) = V(2*(n+1))
- //
- // This function returns
- // [0] = U(k)
- // [1] = V(k)
- // [2] = Q^n
- //
- // Where U(0) = 0 % n, U(1) = 1 % n
- // V(0) = 2 % n, V(1) = P % n
- //***********************************************************************
- public static BigInteger[] LucasSequence(BigInteger P, BigInteger Q,
- BigInteger k, BigInteger n)
- {
- if (k.dataLength == 1 && k.data[0] == 0)
- {
- BigInteger[] result = new BigInteger[3];
- result[0] = 0; result[1] = 2 % n; result[2] = 1 % n;
- return result;
- }
- // calculate constant = b^(2k) / m
- // for Barrett Reduction
- BigInteger constant = new BigInteger();
- int nLen = n.dataLength << 1;
- constant.data[nLen] = 0x00000001;
- constant.dataLength = nLen + 1;
- constant = constant / n;
- // calculate values of s and t
- int s = 0;
- for (int index = 0; index < k.dataLength; index++)
- {
- uint mask = 0x01;
- for (int i = 0; i < 32; i++)
- {
- if ((k.data[index] & mask) != 0)
- {
- index = k.dataLength; // to break the outer loop
- break;
- }
- mask <<= 1;
- s++;
- }
- }
- BigInteger t = k >> s;
- //Console.WriteLine("s = " + s + " t = " + t);
- return LucasSequenceHelper(P, Q, t, n, constant, s);
- }
- //***********************************************************************
- // Performs the calculation of the kth term in the Lucas Sequence.
- // For details of the algorithm, see reference [9].
- //
- // k must be odd. i.e LSB == 1
- //***********************************************************************
- private static BigInteger[] LucasSequenceHelper(BigInteger P, BigInteger Q,
- BigInteger k, BigInteger n,
- BigInteger constant, int s)
- {
- BigInteger[] result = new BigInteger[3];
- if ((k.data[0] & 0x00000001) == 0)
- throw (new ArgumentException("Argument k must be odd."));
- int numbits = k.bitCount();
- uint mask = (uint)0x1 << ((numbits & 0x1F) - 1);
- // v = v0, v1 = v1, u1 = u1, Q_k = Q^0
- BigInteger v = 2 % n, Q_k = 1 % n,
- v1 = P % n, u1 = Q_k;
- bool flag = true;
- for (int i = k.dataLength - 1; i >= 0; i--) // iterate on the binary expansion of k
- {
- //Console.WriteLine("round");
- while (mask != 0)
- {
- if (i == 0 && mask == 0x00000001) // last bit
- break;
- if ((k.data[i] & mask) != 0) // bit is set
- {
- // index doubling with addition
- u1 = (u1 * v1) % n;
- v = ((v * v1) - (P * Q_k)) % n;
- v1 = n.BarrettReduction(v1 * v1, n, constant);
- v1 = (v1 - ((Q_k * Q) << 1)) % n;
- if (flag)
- flag = false;
- else
- Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
- Q_k = (Q_k * Q) % n;
- }
- else
- {
- // index doubling
- u1 = ((u1 * v) - Q_k) % n;
- v1 = ((v * v1) - (P * Q_k)) % n;
- v = n.BarrettReduction(v * v, n, constant);
- v = (v - (Q_k << 1)) % n;
- if (flag)
- {
- Q_k = Q % n;
- flag = false;
- }
- else
- Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
- }
- mask >>= 1;
- }
- mask = 0x80000000;
- }
- // at this point u1 = u(n+1) and v = v(n)
- // since the last bit always 1, we need to transform u1 to u(2n+1) and v to v(2n+1)
- u1 = ((u1 * v) - Q_k) % n;
- v = ((v * v1) - (P * Q_k)) % n;
- if (flag)
- flag = false;
- else
- Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
- Q_k = (Q_k * Q) % n;
- for (int i = 0; i < s; i++)
- {
- // index doubling
- u1 = (u1 * v) % n;
- v = ((v * v) - (Q_k << 1)) % n;
- if (flag)
- {
- Q_k = Q % n;
- flag = false;
- }
- else
- Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
- }
- result[0] = u1;
- result[1] = v;
- result[2] = Q_k;
- return result;
- }
- //***********************************************************************
- // Tests the correct implementation of the /, %, * and + operators
- //***********************************************************************
- public static void MulDivTest(int rounds)
- {
- Random rand = new Random();
- byte[] val = new byte[64];
- byte[] val2 = new byte[64];
- for (int count = 0; count < rounds; count++)
- {
- // generate 2 numbers of random length
- int t1 = 0;
- while (t1 == 0)
- t1 = (int)(rand.NextDouble() * 65);
- int t2 = 0;
- while (t2 == 0)
- t2 = (int)(rand.NextDouble() * 65);
- bool done = false;
- while (!done)
- {
- for (int i = 0; i < 64; i++)
- {
- if (i < t1)
- val[i] = (byte)(rand.NextDouble() * 256);
- else
- val[i] = 0;
- if (val[i] != 0)
- done = true;
- }
- }
- done = false;
- while (!done)
- {
- for (int i = 0; i < 64; i++)
- {
- if (i < t2)
- val2[i] = (byte)(rand.NextDouble() * 256);
- else
- val2[i] = 0;
- if (val2[i] != 0)
- done = true;
- }
- }
- while (val[0] == 0)
- val[0] = (byte)(rand.NextDouble() * 256);
- while (val2[0] == 0)
- val2[0] = (byte)(rand.NextDouble() * 256);
- Console.WriteLine(count);
- BigInteger bn1 = new BigInteger(val, t1);
- BigInteger bn2 = new BigInteger(val2, t2);
- // Determine the quotient and remainder by dividing
- // the first number by the second.
- BigInteger bn3 = bn1 / bn2;
- BigInteger bn4 = bn1 % bn2;
- // Recalculate the number
- BigInteger bn5 = (bn3 * bn2) + bn4;
- // Make sure they're the same
- if (bn5 != bn1)
- {
- Console.WriteLine("Error at " + count);
- Console.WriteLine(bn1 + "\n");
- Console.WriteLine(bn2 + "\n");
- Console.WriteLine(bn3 + "\n");
- Console.WriteLine(bn4 + "\n");
- Console.WriteLine(bn5 + "\n");
- return;
- }
- }
- }
- //***********************************************************************
- // Tests the correct implementation of the modulo exponential function
- // using RSA encryption and decryption (using pre-computed encryption and
- // decryption keys).
- //***********************************************************************
- public static void RSATest(int rounds)
- {
- Random rand = new Random(1);
- byte[] val = new byte[64];
- // private and public key
- BigInteger bi_e = new BigInteger("a932b948feed4fb2b692609bd22164fc9edb59fae7880cc1eaff7b3c9626b7e5b241c27a974833b2622ebe09beb451917663d47232488f23a117fc97720f1e7", 16);
- BigInteger bi_d = new BigInteger("4adf2f7a89da93248509347d2ae506d683dd3a16357e859a980c4f77a4e2f7a01fae289f13a851df6e9db5adaa60bfd2b162bbbe31f7c8f828261a6839311929d2cef4f864dde65e556ce43c89bbbf9f1ac5511315847ce9cc8dc92470a747b8792d6a83b0092d2e5ebaf852c85cacf34278efa99160f2f8aa7ee7214de07b7", 16);
- BigInteger bi_n = new BigInteger("e8e77781f36a7b3188d711c2190b560f205a52391b3479cdb99fa010745cbeba5f2adc08e1de6bf38398a0487c4a73610d94ec36f17f3f46ad75e17bc1adfec99839589f45f95ccc94cb2a5c500b477eb3323d8cfab0c8458c96f0147a45d27e45a4d11d54d77684f65d48f15fafcc1ba208e71e921b9bd9017c16a5231af7f", 16);
- Console.WriteLine("e =\n" + bi_e.ToString(10));
- Console.WriteLine("\nd =\n" + bi_d.ToString(10));
- Console.WriteLine("\nn =\n" + bi_n.ToString(10) + "\n");
- for (int count = 0; count < rounds; count++)
- {
- // generate data of random length
- int t1 = 0;
- while (t1 == 0)
- t1 = (int)(rand.NextDouble() * 65);
- bool done = false;
- while (!done)
- {
- for (int i = 0; i < 64; i++)
- {
- if (i < t1)
- val[i] = (byte)(rand.NextDouble() * 256);
- else
- val[i] = 0;
- if (val[i] != 0)
- done = true;
- }
- }
- while (val[0] == 0)
- val[0] = (byte)(rand.NextDouble() * 256);
- Console.Write("Round = " + count);
- // encrypt and decrypt data
- BigInteger bi_data = new BigInteger(val, t1);
- BigInteger bi_encrypted = bi_data.modPow(bi_e, bi_n);
- BigInteger bi_decrypted = bi_encrypted.modPow(bi_d, bi_n);
- // compare
- if (bi_decrypted != bi_data)
- {
- Console.WriteLine("\nError at round " + count);
- Console.WriteLine(bi_data + "\n");
- return;
- }
- Console.WriteLine(" <PASSED>.");
- }
- }
- //***********************************************************************
- // Tests the correct implementation of the modulo exponential and
- // inverse modulo functions using RSA encryption and decryption. The two
- // pseudoprimes p and q are fixed, but the two RSA keys are generated
- // for each round of testing.
- //***********************************************************************
- public static void RSATest2(int rounds)
- {
- Random rand = new Random();
- byte[] val = new byte[64];
- byte[] pseudoPrime1 = {
- (byte)0x85, (byte)0x84, (byte)0x64, (byte)0xFD, (byte)0x70, (byte)0x6A,
- (byte)0x9F, (byte)0xF0, (byte)0x94, (byte)0x0C, (byte)0x3E, (byte)0x2C,
- (byte)0x74, (byte)0x34, (byte)0x05, (byte)0xC9, (byte)0x55, (byte)0xB3,
- (byte)0x85, (byte)0x32, (byte)0x98, (byte)0x71, (byte)0xF9, (byte)0x41,
- (byte)0x21, (byte)0x5F, (byte)0x02, (byte)0x9E, (byte)0xEA, (byte)0x56,
- (byte)0x8D, (byte)0x8C, (byte)0x44, (byte)0xCC, (byte)0xEE, (byte)0xEE,
- (byte)0x3D, (byte)0x2C, (byte)0x9D, (byte)0x2C, (byte)0x12, (byte)0x41,
- (byte)0x1E, (byte)0xF1, (byte)0xC5, (byte)0x32, (byte)0xC3, (byte)0xAA,
- (byte)0x31, (byte)0x4A, (byte)0x52, (byte)0xD8, (byte)0xE8, (byte)0xAF,
- (byte)0x42, (byte)0xF4, (byte)0x72, (byte)0xA1, (byte)0x2A, (byte)0x0D,
- (byte)0x97, (byte)0xB1, (byte)0x31, (byte)0xB3,
- };
- byte[] pseudoPrime2 = {
- (byte)0x99, (byte)0x98, (byte)0xCA, (byte)0xB8, (byte)0x5E, (byte)0xD7,
- (byte)0xE5, (byte)0xDC, (byte)0x28, (byte)0x5C, (byte)0x6F, (byte)0x0E,
- (byte)0x15, (byte)0x09, (byte)0x59, (byte)0x6E, (byte)0x84, (byte)0xF3,
- (byte)0x81, (byte)0xCD, (byte)0xDE, (byte)0x42, (byte)0xDC, (byte)0x93,
- (byte)0xC2, (byte)0x7A, (byte)0x62, (byte)0xAC, (byte)0x6C, (byte)0xAF,
- (byte)0xDE, (byte)0x74, (byte)0xE3, (byte)0xCB, (byte)0x60, (byte)0x20,
- (byte)0x38, (byte)0x9C, (byte)0x21, (byte)0xC3, (byte)0xDC, (byte)0xC8,
- (byte)0xA2, (byte)0x4D, (byte)0xC6, (byte)0x2A, (byte)0x35, (byte)0x7F,
- (byte)0xF3, (byte)0xA9, (byte)0xE8, (byte)0x1D, (byte)0x7B, (byte)0x2C,
- (byte)0x78, (byte)0xFA, (byte)0xB8, (byte)0x02, (byte)0x55, (byte)0x80,
- (byte)0x9B, (byte)0xC2, (byte)0xA5, (byte)0xCB,
- };
- BigInteger bi_p = new BigInteger(pseudoPrime1);
- BigInteger bi_q = new BigInteger(pseudoPrime2);
- BigInteger bi_pq = (bi_p - 1) * (bi_q - 1);
- BigInteger bi_n = bi_p * bi_q;
- for (int count = 0; count < rounds; count++)
- {
- // generate private and public key
- BigInteger bi_e = bi_pq.genCoPrime(512, rand);
- BigInteger bi_d = bi_e.modInverse(bi_pq);
- Console.WriteLine("\ne =\n" + bi_e.ToString(10));
- Console.WriteLine("\nd =\n" + bi_d.ToString(10));
- Console.WriteLine("\nn =\n" + bi_n.ToString(10) + "\n");
- // generate data of random length
- int t1 = 0;
- while (t1 == 0)
- t1 = (int)(rand.NextDouble() * 65);
- bool done = false;
- while (!done)
- {
- for (int i = 0; i < 64; i++)
- {
- if (i < t1)
- val[i] = (byte)(rand.NextDouble() * 256);
- else
- val[i] = 0;
- if (val[i] != 0)
- done = true;
- }
- }
- while (val[0] == 0)
- val[0] = (byte)(rand.NextDouble() * 256);
- Console.Write("Round = " + count);
- // encrypt and decrypt data
- BigInteger bi_data = new BigInteger(val, t1);
- BigInteger bi_encrypted = bi_data.modPow(bi_e, bi_n);
- BigInteger bi_decrypted = bi_encrypted.modPow(bi_d, bi_n);
- // compare
- if (bi_decrypted != bi_data)
- {
- Console.WriteLine("\nError at round " + count);
- Console.WriteLine(bi_data + "\n");
- return;
- }
- Console.WriteLine(" <PASSED>.");
- }
- }
- //***********************************************************************
- // Tests the correct implementation of sqrt() method.
- //***********************************************************************
- public static void SqrtTest(int rounds)
- {
- Random rand = new Random();
- for (int count = 0; count < rounds; count++)
- {
- // generate data of random length
- int t1 = 0;
- while (t1 == 0)
- t1 = (int)(rand.NextDouble() * 1024);
- Console.Write("Round = " + count);
- BigInteger a = new BigInteger();
- a.genRandomBits(t1, rand);
- BigInteger b = a.sqrt();
- BigInteger c = (b + 1) * (b + 1);
- // check that b is the largest integer such that b*b <= a
- if (c <= a)
- {
- Console.WriteLine("\nError at round " + count);
- Console.WriteLine(a + "\n");
- return;
- }
- Console.WriteLine(" <PASSED>.");
- }
- }
- }
- }
- using System;
- using System.Collections.Generic;
- using System.Linq;
- using System.Security.Cryptography;
- using System.Text;
- namespace RSATest
- {
- /// <summary>
- /// 非对称RSA加密类 可以参考
- /// http://www.cnblogs.com/hhh/archive/2011/06/03/2070692.html
- /// http://blog.youkuaiyun.com/zhilunchen/article/details/2943158
- /// 若是私匙加密 则需公钥解密
- /// 反正公钥加密 私匙来解密
- /// 需要BigInteger类来辅助
- /// </summary>
- public static class RSAHelper
- {
- /// <summary>
- /// RSA的容器 可以解密的源字符串长度为 DWKEYSIZE/8-11
- /// </summary>
- public const int DWKEYSIZE = 1024;
- /// <summary>
- /// RSA加密的密匙结构 公钥和私匙
- /// </summary>
- public struct RSAKey
- {
- public string PublicKey { get; set; }
- public string PrivateKey { get; set; }
- }
- #region 得到RSA的解谜的密匙对
- /// <summary>
- /// 得到RSA的解谜的密匙对
- /// </summary>
- /// <returns></returns>
- public static RSAKey GetRASKey()
- {
- RSACryptoServiceProvider.UseMachineKeyStore = true;
- //声明一个指定大小的RSA容器
- RSACryptoServiceProvider rsaProvider = new RSACryptoServiceProvider(DWKEYSIZE);
- //取得RSA容易里的各种参数
- RSAParameters p = rsaProvider.ExportParameters(true);
- return new RSAKey()
- {
- PublicKey = ComponentKey(p.Exponent,p.Modulus),
- PrivateKey = ComponentKey(p.D,p.Modulus)
- };
- }
- #endregion
- #region 检查明文的有效性 DWKEYSIZE/8-11 长度之内为有效 中英文都算一个字符
- /// <summary>
- /// 检查明文的有效性 DWKEYSIZE/8-11 长度之内为有效 中英文都算一个字符
- /// </summary>
- /// <param name="source"></param>
- /// <returns></returns>
- public static bool CheckSourceValidate(string source)
- {
- return (DWKEYSIZE / 8 - 11) >= source.Length;
- }
- #endregion
- #region 组合解析密匙
- /// <summary>
- /// 组合成密匙字符串
- /// </summary>
- /// <param name="b1"></param>
- /// <param name="b2"></param>
- /// <returns></returns>
- private static string ComponentKey(byte[] b1, byte[] b2)
- {
- List<byte> list = new List<byte>();
- //在前端加上第一个数组的长度值 这样今后可以根据这个值分别取出来两个数组
- list.Add((byte)b1.Length);
- list.AddRange(b1);
- list.AddRange(b2);
- byte[] b = list.ToArray<byte>();
- return Convert.ToBase64String(b);
- }
- /// <summary>
- /// 解析密匙
- /// </summary>
- /// <param name="key">密匙</param>
- /// <param name="b1">RSA的相应参数1</param>
- /// <param name="b2">RSA的相应参数2</param>
- private static void ResolveKey(string key, out byte[] b1, out byte[] b2)
- {
- //从base64字符串 解析成原来的字节数组
- byte[] b = Convert.FromBase64String(key);
- //初始化参数的数组长度
- b1=new byte[b[0]];
- b2=new byte[b.Length-b[0]-1];
- //将相应位置是值放进相应的数组
- for (int n = 1, i = 0, j = 0; n < b.Length; n++)
- {
- if (n <= b[0])
- {
- b1[i++] = b[n];
- }
- else {
- b2[j++] = b[n];
- }
- }
- }
- #endregion
- #region 字符串加密解密 公开方法
- /// <summary>
- /// 字符串加密
- /// </summary>
- /// <param name="source">源字符串 明文</param>
- /// <param name="key">密匙</param>
- /// <returns>加密遇到错误将会返回原字符串</returns>
- public static string EncryptString(string source,string key)
- {
- string encryptString = string.Empty;
- byte[] d;
- byte[] n;
- try
- {
- if (!CheckSourceValidate(source))
- {
- throw new Exception("source string too long");
- }
- //解析这个密钥
- ResolveKey(key, out d, out n);
- BigInteger biN = new BigInteger(n);
- BigInteger biD = new BigInteger(d);
- encryptString= EncryptString(source, biD, biN);
- }
- catch
- {
- encryptString = source;
- }
- return encryptString;
- }
- /// <summary>
- /// 字符串解密
- /// </summary>
- /// <param name="encryptString">密文</param>
- /// <param name="key">密钥</param>
- /// <returns>遇到解密失败将会返回原字符串</returns>
- public static string DecryptString(string encryptString, string key)
- {
- string source = string.Empty;
- byte[] e;
- byte[] n;
- try
- {
- //解析这个密钥
- ResolveKey(key, out e, out n);
- BigInteger biE = new BigInteger(e);
- BigInteger biN = new BigInteger(n);
- source = DecryptString(encryptString, biE, biN);
- }
- catch {
- source = encryptString;
- }
- return source;
- }
- #endregion
- #region 字符串加密解密 私有 实现加解密的实现方法
- /// <summary>
- /// 用指定的密匙加密
- /// </summary>
- /// <param name="source">明文</param>
- /// <param name="d">可以是RSACryptoServiceProvider生成的D</param>
- /// <param name="n">可以是RSACryptoServiceProvider生成的Modulus</param>
- /// <returns>返回密文</returns>
- private static string EncryptString(string source, BigInteger d, BigInteger n)
- {
- int len = source.Length;
- int len1 = 0;
- int blockLen = 0;
- if ((len % 128) == 0)
- len1 = len / 128;
- else
- len1 = len / 128 + 1;
- string block = "";
- StringBuilder result = new StringBuilder();
- for (int i = 0; i < len1; i++)
- {
- if (len >= 128)
- blockLen = 128;
- else
- blockLen = len;
- block = source.Substring(i * 128, blockLen);
- byte[] oText = System.Text.Encoding.Default.GetBytes(block);
- BigInteger biText = new BigInteger(oText);
- BigInteger biEnText = biText.modPow(d, n);
- string temp = biEnText.ToHexString();
- result.Append(temp).Append("@");
- len -= blockLen;
- }
- return result.ToString().TrimEnd('@');
- }
- /// <summary>
- /// 用指定的密匙加密
- /// </summary>
- /// <param name="source">密文</param>
- /// <param name="e">可以是RSACryptoServiceProvider生成的Exponent</param>
- /// <param name="n">可以是RSACryptoServiceProvider生成的Modulus</param>
- /// <returns>返回明文</returns>
- private static string DecryptString(string encryptString, BigInteger e, BigInteger n)
- {
- StringBuilder result = new StringBuilder();
- string[] strarr1 = encryptString.Split(new char[] { '@' }, StringSplitOptions.RemoveEmptyEntries);
- for (int i = 0; i < strarr1.Length; i++)
- {
- string block = strarr1[i];
- BigInteger biText = new BigInteger(block, 16);
- BigInteger biEnText = biText.modPow(e, n);
- string temp = System.Text.Encoding.Default.GetString(biEnText.getBytes());
- result.Append(temp);
- }
- return result.ToString();
- }
- #endregion
- }
- }
测试程序:
- using System;
- using System.Collections.Generic;
- using System.Linq;
- using System.Text;
- namespace RSATest
- {
- class Program
- {
- static void Main(string[] args)
- {
- string str = "{\"sc\":\"his51\",\"no\":\"1\",\"na\":\"管理员\"}{\"sc\":\"@his51\",\"no\":\"1\",\"na\":\"管理员\"}{\"sc\":\"his51\",\"no\":\"1\",\"na\":\"管员\"}{\"sc\":\"his522";
- RSAHelper.RSAKey keyPair = RSAHelper.GetRASKey();
- Console.WriteLine("加密前:"+str+"\r\n");
- Console.WriteLine("公钥:" + keyPair.PublicKey + "\r\n");
- Console.WriteLine("私钥:" + keyPair.PrivateKey + "\r\n");
- string en = RSAHelper.EncryptString(str, keyPair.PrivateKey);
- Console.WriteLine("加密后:"+en + "\r\n");
- Console.WriteLine("解密:"+RSAHelper.DecryptString(en, keyPair.PublicKey) + "\r\n");
- Console.ReadLine();
- }
- }
- }