前言:
点云识别的深度学习极其需要噪声少的物体点云来作为训练集。获得噪声少的物体点云需要一个好的点云分割器。PCL官方网站:http://pointclouds.org/documentation/tutorials/#segmentation-tutorial提供10来种点云分割的方法,让我来聊聊我的浅见。
PCL提供的点云分割的方法:
1. Plane model segmentation (平面模型分割)
2. Cylinder model segmentation(圆柱模型分割)
3. Euclidean Cluster Extraction (欧几里德聚类提取)
4. Region growing segmentation (区域蔓延分割)
5. Color-based region growing segmentation (基于彩色信息区域蔓延分割)
6. Min-cut Based Segmentation (基于最少切割的分割)
7. Conditional Euclidean Clustering(有条件的欧几里德群聚类生成)
8. Difference of Normals Based Segmentation (基于局部法线间不同值的分割)
9. Clustering of Pointclouds into Supervoxels (把点云聚类为超体元)
10. Identifying ground returns using ProgressiveMorphologicalFilter segementation (渐进型形态学过滤器分割)
11. Filtering a PointCloud using ModelOutlierRemoval (基于移除模型离群值的方法过滤点云)
<