算法训练(一)青蛙跳

假设青蛙一次只能跳1级或者2级,一共n级台阶,请问青蛙有多少种跳法?

思路:

1级:1种

2级:2种

3级:第一步跳1级,或者第一步跳2级 f(2)+f(1)

4级:第一步跳1级,或者第一步跳2级 f(3)+f(2)

以此类推,n级 f(n-1)+f(n-2)

方法一:递归

public static int getNum(int n) {
    int num = 0;
    if(n<1) {
        num = 0;
    } else if (n>2) {
        num = getNum(n-1) + getNum(n-2);
    } else if (n==1) {
        num = 1;
    } else{
        num=2;
    }
    return num;
}
方法二:循环

循环这里想了很久,需要考虑用变量存储数据,如何累计这里值得深入思考。

public static int getCount(int n) {
    int before = 1;
    int sum = 0;
    int cur = 0;
    if (n < 1) {
        sum = 0;
    }
    if (n==1) {
        sum = 1;
    }
    if (n==2) {
        sum = 2;
    }
    if (n>2) {
        before = 1;
        sum = 2;
        for (int i = 2; i < n;i++) {
            cur = sum;
            sum = sum + before;
            before = cur;
        }
    }
    return sum;
}
跳台阶二:假设青蛙一次能跳1-n的级数,一共n级台阶,请问青蛙有多少种跳法?
思路同上,依次写出前几个的跳法数。发现为2^n-1,但在这里,并不是一下发现这个规律。一直纠结于怎样把前面所有的结果加起来,以后要注意不能钻死胡同,变换想法,别有一番洞天。
public static int nStepCount(int n) {
    int sum = 1;
    if(n < 1) {
        sum = 0;
    } else if (n == 1) {
        sum = 1;
    } else {
        for (int i = 1; i < n;i++) {
            sum = sum*2 ;
        }
    }
    return sum;
}

代码的确不够优雅呀,慢慢进步吧。共勉
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值