Python
核心理解:
解释下为什么dp[i-1,j]到dp[i,j]是对应的删除操作,而dp[i,j-1]到dp[i,j]对应的是插入操作。
首先必须明确的是dp[i,j]表示的是: 源字符串前i个字符,变成和目标字符串前j个字符一模一样需要的编辑次数。
那么已知dp[i-1,j]=n,求dp[i,j],意思是:已知原字符串前i-1个字符通过n次编辑可以和目标字符串前j个字符一模一样。求求dp[i,j]。
现在原字符串前进一位从i-1跑到i,这时要和目标字符串前j个字符一样,那么必须对跑到位置i的源字符串做一次删除操作,才能使得源字符串退回到i-i位置,这时他俩才能又一模一样
class Solution:
def minDistance(self, word1: str, word2: str) -> int:
m, n = len(word1), len(word2)
dp = [[0]*(n+1) for _ in range(m+1)] # dp[i][j]表示word1[0,i-1]和word2[0,j-1]的最小编辑距离
for i in range(n+1):
dp[0][i] = i
for i in range(m+1):
dp[i][0] = i
for i in range(1, m+1):
for j in range(1, n+1):
if word1[i-1: i] == word2[j-1: j]:
dp[i][j] = dp[i-1][j-1]
else:
dp[i][j] = min([dp[i-1][j-1], dp[i-1][j], dp[i][j-1]]) + 1
return dp[m][n]
Java
法1:DP
二维DP,自底向上,参见《算法小抄》中的解释,更容易理解!!!
class Solution {
public int minDistance(String word1, String word2) {
int m = word1.length() + 1, n = word2.length() + 1; // 加1是兼容空串
int[][] dp = new int[m][n];
for (int i = 1; i < n; ++i) {
dp[0][i] = i;
}
for (int i = 1; i < m; ++i) {
dp[i][0] = i;
}
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; ++j) {
if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
dp[i][j] = dp[i - 1][j - 1];
} else {
dp[i][j] = Math.min(dp[i - 1][j - 1], Math.min(dp[i][j - 1], dp[i - 1][j])) + 1;
}
}
}
return dp[m - 1][n - 1];
}
}