package aturbo.index.inverted;
import java.io.IOException;
import java.util.HashSet;
import org.apache.commons.lang3.StringUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
/**
* 倒置索引的实现(MR)
* @author aturbo
*
*/
public class InvertedIndex {
public static class Map extends Mapper<LongWritable, Text, Text, Text>{
private Text documentId;
private Text word = new Text();
@Override
protected void setup(Context context){
String filename = ((FileSplit)context.getInputSplit()).getPath().getName();
documentId = new Text(filename);
}
@Override
protected void map(LongWritable key,Text value,Context context)throws IOException,InterruptedException{
for(String token:StringUtils.split(value.toString())){
word.set(token);
context.write(word, documentId);
}
}
}
public static class Reduce extends Reducer<Text, Text, Text, Text>{
private Text docIds = new Text();
public void reduce(Text key,Iterable<Text> values,Context context)throws IOException,InterruptedException{
HashSet<Text> uniqueDocIds = new HashSet<Text>();
for(Text docId:values){
uniqueDocIds.add(docId);
}
docIds.set(new Text(StringUtils.join(uniqueDocIds, ",")));
context.write(key, docIds);
}
}
public static void main(String[] args)throws Exception{
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if(otherArgs.length!=2){
System.err.println("Usage:InvertedIndex<in><out>");
System.exit(2);
}
Job job = new Job(conf,"inverted index");
job.setJarByClass(InvertedIndex.class);
job.setMapperClass(Map.class);
job.setCombinerClass(Reduce.class);
job.setReducerClass(Reduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true)?0:1);
}
}分布式倒置索引(MapReduce程序)
最新推荐文章于 2023-10-08 09:06:48 发布
本文介绍了一种使用Hadoop MapReduce实现的倒排索引方法,通过Map阶段将文档ID与单词关联,Reduce阶段汇总相同单词出现的所有文档ID,最终形成倒排索引表。
1万+

被折叠的 条评论
为什么被折叠?



