c++ Lambda函数

C++ 11中的Lambda表达式用于定义并创建匿名的函数对象,以简化编程工作。
Lambda的语法形式如下:

[函数对象参数] (操作符重载函数参数) mutable或exception声明 -> 返回值类型 {函数体}
可以看到,Lambda主要分为五个部分:[函数对象参数]、(操作符重载函数参数)、mutable或exception声明、-> 返回值类型、{函数体}。

下面分别进行介绍。

一、[函数对象参数],标识一个Lambda的开始,这部分必须存在,不能省略。函数对象参数是传递给编译器自动生成的函数对象类的构造函数的。函数对象参数只能使用那些到定义Lambda为止时Lambda所在作用范围内可见的局部变量(包括Lambda所在类的this)。函数对象参数有以下形式:

1、空。没有使用任何函数对象参数。
2、=。函数体内可以使用Lambda所在作用范围内所有可见的局部变量(包括Lambda所在类的this),并且是值传递方式(相当于编译器自动为我们按值传递了所有局部变量)。
3、&。函数体内可以使用Lambda所在作用范围内所有可见的局部变量(包括Lambda所在类的this),并且是引用传递方式(相当于编译器自动为我们按引用传递了所有局部变量)。
4、this。函数体内可以使用Lambda所在类中的成员变量。
5、a。将a按值进行传递。按值进行传递时,函数体内不能修改传递进来的a的拷贝,因为默认情况下函数是const的。要修改传递进来的a的拷贝,可以添加mutable修饰符。
6、&a。将a按引用进行传递。
7、a, &b。将a按值进行传递,b按引用进行传递。
8、=,&a, &b。除a和b按引用进行传递外,其他参数都按值进行传递。
9、&, a, b。除a和b按值进行传递外,其他参数都按引用进行传递。
二、(操作符重载函数参数),标识重载的()操作符的参数,没有参数时,这部分可以省略。参数可以通过按值(如:(a,b))和按引用(如:(&a, &b))两种方式进行传递。

三、mutable或exception声明,这部分可以省略。按值传递函数对象参数时,加上mutable修饰符后,可以修改按值传递进来的拷贝(注意是能修改拷贝,而不是值本身)。exception声明用于指定函数抛出的异常,如抛出整数类型的异常,可以使用throw(int)。

四、-> 返回值类型,标识函数返回值的类型,当返回值为void,或者函数体中只有一处return的地方(此时编译器可以自动推断出返回值类型)时,这部分可以省略。

五、{函数体},标识函数的实现,这部分不能省略,但函数体可以为空。

或许,Lambda 表达式算得上是 C++ 11 新增特性中最激动人心的一个。这个全新的特性听起来很深奥,但却是很多其他语言早已提供(比如 C#)或者即将提供(比如 Java)的。简而言之,Lambda 表达式就是用于创建匿名函数的。GCC 4.5.x 和 Microsoft Visual Studio 早已提供了对 lambda 表达式的支持。在 GCC 4.7 中,默认是不开启 C++ 11 特性的,需要添加 -std=c++11 编译参数。而 VS2010 则默认开启。

为什么说 lambda 表达式如此激动人心呢?举一个例子。标准 C++ 库中有一个常用算法的库,其中提供了很多算法函数,比如 sort() 和 find()。这些函数通常需要提供一个“谓词函数 predicate function”。所谓谓词函数,就是进行一个操作用的临时函数。比如 find() 需要一个谓词,用于查找元素满足的条件;能够满足谓词函数的元素才会被查找出来。这样的谓词函数,使用临时的匿名函数,既可以减少函数数量,又会让代码变得清晰易读。

下面来看一个例子:

#include <algorithm>
#include <cmath>

void abssort(float *x, unsigned N)
{
  std::sort(x,
            x + N,
            [](float a, float b) { return std::abs(a) < std::abs(b); });
}

从上面的例子来看,尽管支持 lambda 表达式,但 C++ 的语法看起来却很“神奇”。lambda 表达式使用一对方括号作为开始的标识,类似于声明一个函数,只不过这个函数没有名字,也就是一个匿名函数。这个匿名函数接受两个参数,a和b;其返回值是一个 bool 类型的值,注意,返回值是自动推断的,不需要显式声明,不过这是有条件的!条件就是,lambda 表达式的语句只有一个 return。函数的作用是比较 a、b 的绝对值的大小。然后,在此例中,这个 lambda 表达式作为一个闭包被传递给 std::sort() 函数。

下面,我们来详细解释下这个神奇的语法到底代表着什么。
我们从另外一个例子开始:

std::cout << [](float f) { return std::abs(f); } (-3.5);

输出值是什么?3.5!注意,这是一个函数对象(由 lambda 表达式生成),其实参是 -3.5,返回值是参数的绝对值。lambda 表达式的返回值类型是语言自动推断的,因为std::abs()的返回值就是 float。注意,前面我们也提到了,只有当 lambda 表达式中的语句“足够简单”,才能自动推断返回值类型。

C++ 11 的这种语法,其实就是匿名函数声明之后马上调用(否则的话,如果这个匿名函数既不调用,又不作为闭包传递给其它函数,那么这个匿名函数就没有什么用处)。如果你觉得奇怪,那么来看看 JavaScript 的这种写法:

function() {} ();
function(a) {} (-3.5);
C++ 11 的写法完全类似 JavaScript 的语法。

如果我不想让 lambda 表达式自动推断类型,或者是 lambda 表达式的内容很复杂,不能自动推断怎么办?比如,std::abs(float)的返回值是 float,我想把它强制转型为 int。那么,此时,我们就必须显式指定 lambda 表达式返回值的类型:

std::cout << [](float f) -> int { return std::abs(f); } (-3.5);

这个语句与前面的不同之处在于,lambda 表达式的返回时不是 float 而是 int。也就是说,上面语句的输出值是 3。返回值类型的概念同普通的函数返回值类型是完全一样的。

当我们想引用一个 lambda 表达式时,我们可以使用auto关键字,例如:

auto lambda = [] () -> int { return val * 100; };
auto关键字实际会将 lambda 表达式转换成一种类似于std::function的内部类型(但并不是std::function类型,虽然与std::function“兼容”)。所以,我们也可以这么写:

std::function

例如:
float f0 = 1.0;
std::cout << [=](float f) { return f0 + std::abs(f); } (-3.5);
其输出值是 4.5。[=] 意味着,lambda 表达式以传值的形式捕获同范围内的变量。

另外一个例子:
float f0 = 1.0;
std::cout << [&](float f) { return f0 += std::abs(f); } (-3.5);
std::cout << '\n' << f0 << '\n';
输出值是 4.54.5。[&] 表明,lambda 表达式以传引用的方式捕获外部变量。

那么,下一个例子:
float f0 = 1.0;
std::cout << [=](float f) mutable { return f0 += std::abs(f); } (-3.5);
std::cout << '\n' << f0 << '\n';

这个例子很有趣。首先,[=]意味着,lambda 表达式以传值的形式捕获外部变量。C++ 11 标准说,如果以传值的形式捕获外部变量,那么,lambda 体不允许修改外部变量,对 f0 的任何修改都会引发编译错误。但是,注意,我们在 lambda 表达式前声明了mutable关键字,这就允许了 lambda 表达式体修改 f0 的值。因此,我们的例子本应报错,但是由于有 mutable 关键字,则不会报错。那么,你会觉得输出值是什么呢?答案是,4.5 和 1.0。为什么 f0 还是 1.0?因为我们是传值的,虽然在 lambda 表达式中对 f0 有了修改,但由于是传值的,外部的 f0 依然不会被修改。

上面的例子是,所有的变量要么传值,要么传引用。那么,是不是有混合机制呢?当然也有!比如下面的例子:

float f0 = 1.0f;
float f1 = 10.0f;
std::cout << [=, &f0](float a) { return f0 += f1 + std::abs(a); } (-3.5);
std::cout << '\n' << f0 << '\n';
这个例子的输出是 14.514.5。在这个例子中,f0 通过引用被捕获,而其它变量,比如 f1 则是通过值被捕获。
下面我们来总结下所有出现的 lambda 引入符:

[]        // 不捕获任何外部变量
[=]      // 以值的形式捕获所有外部变量
[&]      // 以引用形式捕获所有外部变量
[x, &y] // x 以传值形式捕获,y 以引用形式捕获
[=, &z]// z 以引用形式捕获,其余变量以传值形式捕获
[&, x]  // x 以值的形式捕获,其余变量以引用形式捕获

另外有一点需要注意。对于[=]或[&]的形式,lambda 表达式可以直接使用 this 指针。但是,对于[]的形式,如果要使用 this 指针,必须显式传入:

this { this->someFunc(); }();

至此,我们已经大致了解了 C++ 11 提供的 lambda 表达式的概念。建议通过结合 lambda 表达式与std::sort()或std::for_each()这样的标准函数来尝试使用一下吧!

#include <iostream>  
#include <algorithm>  
#include <vector>  

using namespace std;

int main()
{
    vector<int> hello = {0, 1, 2, 3, 4, 5,5, 6};

    int x = 5;
    int sum = count_if(hello.begin(), hello.end(), [x](int n) {return x == n; });

    cout << sum << endl;

    int a   = 10;
    char i  = 2;
    float c = 2.3;

    cout << [=, &a](int n) {return a < c ? a+n : c+n; }(100) << endl;

    return 0;
}
### C++ Lambda 表达式简介 Lambda 表达式是 C++11 标准引入的一种匿名函数,可以在需要函数对象的地方直接编写代码块,而无需定义一个完整的函数。这种特性极大地提高了代码的简洁性和可读性。 #### 基本语法结构 Lambda 表达式的通用形式如下: ```cpp [capture](parameters) -> return_type { // function body } ``` - `capture`:捕获列表,用于指定外部变量如何被捕获。 - `parameters`:参数列表,类似于普通函数的参数声明。 - `return_type`:返回类型,默认情况下可以省略,编译器会自动推断。 - `function body`:函数体,即执行的具体逻辑。 #### 捕获机制 捕获列表决定了 lambda 函数能否访问其所在作用域中的局部变量和 this 指针。常见的捕获方式有: - **按值捕获**:使用 `[=]` 将所有外部变量按值复制到闭包中。 - **按引用捕获**:使用 `[&]` 将所有外部变量按引用传递给闭包。 - **混合捕获**:可以选择特定变量按值或按引用捕获,例如 `[a, &b]`。 #### 实际应用场景 ##### 并行编程中的应用 在多线程环境中,lambda 可以简化任务创建与管理过程。下面是一个简单的例子展示如何利用 lambda 启动一个新的工作线程[^2]: ```cpp #include <iostream> #include <thread> using namespace std; int main() { // 使用 Lambda 创建一个新线程 thread t([]() { cout << "Hello from thread!" << endl; }); t.join(); // 等待子线程完成 return 0; } ``` 此程序启动了一个新的线程来打印消息,并通过调用 join 方法等待该线程结束前不会继续执行主线程后续操作。 ##### STL 算法库的应用 当配合标准模板库 (STL) 的迭代器算法时,lambda 能够让代码更加紧凑易懂。比如对容器内元素进行过滤处理: ```cpp #include <algorithm> #include <vector> #include <iostream> using namespace std; void print_even_numbers(const vector<int>& nums) { copy_if(nums.begin(), nums.end(), ostream_iterator<int>(cout, "\n"), [](int n){ return n % 2 == 0; }); // 这里使用了 lambda 来实现偶数筛选条件 } int main(){ vector<int> numbers{1, 2, 3, 4, 5}; print_even_numbers(numbers); return 0; } ``` 这段代码遍历输入向量并将其中所有的偶数值输出至控制台。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值