libSVM使用之--grid.py

本文探讨了libSVM中grid.py工具如何通过交叉验证选择C和gamma参数,以平衡模型过拟合和非线性程度。高gamma值对应低sigma,增加模型非线性行为。通过网格搜索和5折交叉验证评估模型性能,最终通过ROC曲线验证模型在验证集上的表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

此工具利用交叉验证的原理来选择参数c和gamma,是否有更佳的参数,有待考证。其中两参数的作用见如下:

 

The SVM with a Gaussian kernel function has two such training parameters: C which controls overfitting of the model, and gamma (γ) which controls the degree of nonlinearity of the model. Gamma is inversely related to sigma which is a degree for spread around a mean in statistics: the higher the value of gamma, the lower the value of sigma, thus the less spread or the more nonlinear the behavior of the kernel. The values of these training parameters C and gamma are determined by grid search and cross validation: the model with the highest estimated performance determines the selected training parameters. Then, the performance of the constructed model is estimated by using 5-fold cross validation on the training data. Finally, the constructed model is validated by predicting the validation data and comparing these predictions with the real observations by means of ROC curves.

gamma(或Epsilon ε)---不敏感损失
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值