1)Spark on Hive
Spark on Hive 是Hive只作为存储角色,Spark负责sql解析优化,执行。这里可以理解为Spark 通过Spark SQL 使用Hive 语句操作Hive表 ,底层运行的还是 Spark RDD。具体步骤如下:
- 通过SparkSQL,加载Hive的配置文件,获取到Hive的元数据信息;
- 获取到Hive的元数据信息之后可以拿到Hive表的数据;
- 通过SparkSQL来操作Hive表中的数据。
【总结】Spark使用Hive来提供表的metadata信息。
2)Hive on Spark
Hive on Spark是Hive既作为存储又负责sql的解析优化,Spark负责执行。这里Hive的执行引擎变成了Spark,不再是MR,这个要实现比Spark on Hive麻烦很多, 必须重新编译你的spark和导入jar包,不过目前大部分使用的确实是spark on hive。
Hive默认使用MapReduce作为执行引擎,即Hive on MapReduce。实际上,Hive还可以使用Tez和Spark作为其执行引擎,分别为Hive on Tez和Hive on Spark。由于MapReduce中间计算均需要写入磁盘