中华石杉ES入门篇
功能
1)分布式的搜索引擎和数据分析引擎
搜索:百度,网站的站内搜索,IT系统的检索 数据分析:电商网站,最近7天牙膏这种商品销量排名前10的商家有哪些;新闻网站,最近1个月访问量排名前3的新闻版块是哪些 分布式,搜索,数据分析
2)全文检索,结构化检索,数据分析
全文检索:我想搜索商品名称包含牙膏的商品,select * from products where product_name like "%牙膏%" 结构化检索:我想搜索商品分类为日化用品的商品都有哪些,select * from products where category_id='日化用品' 部分匹配、自动完成、搜索纠错、搜索推荐 数据分析:我们分析每一个商品分类下有多少个商品,select category_id,count(*) from products group by category_id
3)对海量数据进行近实时的处理
分布式:ES自动可以将海量数据分散到多台服务器上去存储和检索 海联数据的处理:分布式以后,就可以采用大量的服务器去存储和检索数据,自然而然就可以实现海量数据的处理了 近实时:检索个数据要花费1小时(这就不要近实时,离线批处理,batch-processing);在秒级别对数据进行搜索和分析
跟分布式/海量数据相反的:lucene,单机应用,只能在单台服务器上使用,最多只能处理单台服务器可以处理的数据量
适用场景
国外
(1)维基百科,类似百度百科,牙膏,牙膏的维基百科,全文检索,高亮,搜索推荐 (2)The Guardian(国外新闻网站),类似搜狐新闻,用户行为日志(点击,浏览,收藏,评论)+社交网络数据(对某某新闻的相关看法),数据分析,给到每篇新闻文章的作者,让他知道他的文章的公众反馈(好,坏,热门,垃圾,鄙视,崇拜) (3)Stack Overflow(国外的程序异常讨论论坛),IT问题,程序的报错,提交上去,有人会跟你讨论和回答,全文检索,搜索相关问题和答案,程序报错了,就会将报错信息粘贴到里面去,搜索有没有对应的答案 (4)GitHub(开源代码管理),搜索上千亿行代码 (5)电商网站,检索商品 (6)日志数据分析,logstash采集日志,ES进行复杂的数据分析(ELK技术,elasticsearch+logstash+kibana) (7)商品价格监控网站,用户设定某商品的价格阈值,当低于该阈值的时候,发送通知消息给用户,比如说订阅牙膏的监控,如果高露洁牙膏的家庭套装低于50块钱,就通知我,我就去买 (8)BI系统,商业智能,Business Intelligence。比如说有个大型商场集团,BI,分析一下某某区域最近3年的用户消费金额的趋势以及用户群体的组成构成,产出相关的数张报表,**区,最近3年,每年消费金额呈现100%的增长,而且用户群体85%是高级白领,开一个新商场。ES执行数据分析和挖掘,Kibana进行数据可视化
国内
(9)国内:站内搜索(电商,招聘,门户,等等),IT系统搜索(OA,CRM,ERP,等等),数据分析(ES热门的一个使用场景)
Elasticsearch的特点
-
可以作为一个大型分布式集群(数百台服务器)技术,处理PB级数据,服务大公司;也可以运行在单机上,服务小公司
-
Elasticsearch不是什么新技术,主要是将全文检索、数据分析以及分布式技术,合并在了一起,才形成了独一无二的ES;lucene(全文检索),商用的数据分析软件(也是有的),分布式数据库(mycat)
-
对用户而言,是开箱即用的,非常简单,作为中小型的应用,直接3分钟部署一下ES,就可以作为生产环境的系统来使用了,数据量不大,操作不是太复杂
-
数据库的功能面对很多领域是不够用的(事务,还有各种联机事务型的操作);特殊的功能,比如全文检索,同义词处理,相关度排名,复杂数据分析,海量数据的近实时处理;Elasticsearch作为传统数据库的一个补充,提供了数据库所不不能提供的很多功能
elasticsearch的核心概念
(1)Near Realtime(NRT):近实时,两个意思,从写入数据到数据可以被搜索到有一个小延迟(大概1秒);基于es执行搜索和分析可以达到秒级
(2)Cluster:集群,包含多个节点,每个节点属于哪个集群是通过一个配置(集群名称,默认是elasticsearch)来决定的,对于中小型应用来说,刚开始一个集群就一个节点很正常 (3)Node:节点,集群中的一个节点,节点也有一个名称(默认是随机分配的),节点名称很重要(在执行运维管理操作的时候),默认节点会去加入一个名称为“elasticsearch”的集群,如果直接启动一堆节点,那么它们会自动组成一个elasticsearch集群,当然一个节点也可以组成一个elasticsearch集群
(4)Document&field:文档,es中的最小数据单元,一个document可以是一条客户数据,一条商品分类数据,一条订单数据,通常用JSON数据结构表示,每个index下的type中,都可以去存储多个document。一个document里面有多个field,每个field就是一个数据字段。
product document
{ "product_id": "1", "product_name": "高露洁牙膏", "product_desc": "高效美白", "category_id": "2", "category_name": "日化用品" }
(5)Index:索引,包含一堆有相似结构的文档数据,比如可以有一个客户索引,商品分类索引,订单索引,索引有一个名称。一个index包含很多document,一个index就代表了一类类似的或者相同的document。比如说建立一个product index,商品索引,里面可能就存放了所有的商品数据,所有的商品document。 (6)Type:类型,每个索引里都可以有一个或多个type,type是index中的一个逻辑数据分类,一个type下的document,都有相同的field,比如博客系统,有一个索引,可以定义用户数据type,博客数据type,评论数据type。
商品index,里面存放了所有的商品数据,商品document
但是商品分很多种类,每个种类的document的field可能不太一样,比如说电器商品,可能还包含一些诸如售后时间范围这样的特殊field;生鲜商品,还包含一些诸如生鲜保质期之类的特殊field
type,日化商品type,电器商品type,生鲜商品type
日化商品type:product_id,product_name,product_desc,category_id,category_name 电器商品type:product_id,product_name,product_desc,category_id,category_name,service_period 生鲜商品type:product_id,product_name,product_desc,category_id,category_name,eat_period
每一个type里面,都会包含一堆document
{ "product_id": "2", "product_name": "长虹电视机", "product_desc": "4k高清", "category_id": "3", "category_name": "电器", "service_period": "1年" }
{ "product_id": "3", "product_name": "基围虾", "product_desc": "纯天然,冰岛产", "category_id": "4", "category_name": "生鲜", "eat_period": "7天" }
(7)shard:单台机器无法存储大量数据,es可以将一个索引中的数据切分为多个shard,分布在多台服务器上存储。有了shard就可以横向扩展,存储更多数据,让搜索和分析等操作分布到多台服务器上去执行,提升吞吐量和性能。每个shard都是一个lucene index。 (8)replica:任何一个服务器随时可能故障或宕机,此时shard可能就会丢失,因此可以为每个shard创建多个replica副本。replica可以在shard故障时提供备用服务,保证数据不丢失,多个replica还可以提升搜索操作的吞吐量和性能。primary shard(建立索引时一次设置,不能修改,默认5个),replica shard(随时修改数量,默认1个),默认每个索引10个shard,5个primary shard,5个replica shard,最小的高可用配置,是2台服务器。
elasticsearch核心概念 vs. 数据库核心概念
Elasticsearch 数据库
Document | 行 Type | 表 Index | 库
windows下安装使用ES
1、安装JDK,至少1.8.0_73以上版本,java -version 2、下载和解压缩Elasticsearch安装包,目录结构 3、启动Elasticsearch:bin\elasticsearch.bat,es本身特点之一就是开箱即用,如果是中小型应用,数据量少,操作不是很复杂,直接启动就可以用了
4、检查ES是否启动成功:http://localhost:9200/?pretty
name: node名称 cluster_name: 集群名称(默认的集群名称就是elasticsearch) version.number: 5.2.0,es版本号
{ "name" : "4onsTYV", "cluster_name" : "elasticsearch", "cluster_uuid" : "nKZ9VK_vQdSQ1J0Dx9gx1Q", "version" : { "number" : "5.2.0", "build_hash" : "24e05b9", "build_date" : "2017-01-24T19:52:35.800Z", "build_snapshot" : false, "lucene_version" : "6.4.0" }, "tagline" : "You Know, for Search" }
5、修改集群名称:elasticsearch.yml 6、下载和解压缩Kibana安装包,使用里面的开发界面,去操作elasticsearch,作为我们学习es知识点的一个主要的界面入口 7、启动Kibana:bin\kibana.bat 8、进入Dev Tools界面 9、GET _cluster/health
简单的集群管理
es提供了一套api,叫做cat api,可以查看es中各种各样的数据
GET /_cat/health?v
epoch timestamp cluster status node.total node.data shards pri relo init unassign pending_tasks max_task_wait_time active_shards_percent 1488006741 15:12:21 elasticsearch yellow 1 1 1 1 0 0 1 0 - 50.0%
epoch timestamp cluster status node.total node.data shards pri relo init unassign pending_tasks max_task_wait_time active_shards_percent 1488007113 15:18:33 elasticsearch green 2 2 2 1 0 0 0 0 - 100.0%
epoch timestamp cluster status node.total node.data shards pri relo init unassign pending_tasks max_task_wait_time active_shards_percent 1488007216 15:20:16 elasticsearch yellow 1 1 1 1 0 0 1 0 - 50.0%
如何快速了解集群的健康状况?green、yellow、red?
green:每个索引的primary shard和replica shard都是active状态的 yellow:每个索引的primary shard都是active状态的,但是部分replica shard不是active状态,处于不可用的状态 red:不是所有索引的primary shard都是active状态的,部分索引有数据丢失了
(2)快速查看集群中有哪些索引
GET /_cat/indices?v
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size yellow open .kibana rUm9n9wMRQCCrRDEhqneBg 1 1 1 0 3.1kb 3.1kb
(3)简单的索引操作
创建索引:
PUT /test_index?pretty
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size yellow open test_index XmS9DTAtSkSZSwWhhGEKkQ 5 1 0 0 650b 650b yellow open .kibana rUm9n9wMRQCCrRDEhqneBg 1 1 1 0 3.1kb 3.1kb
删除索引:
DELETE /test_index?pretty
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size yellow open .kibana rUm9n9wMRQCCrRDEhqneBg 1 1 1 0 3.1kb 3.1kb
CRUD操作
(1)新增商品:新增文档,建立索引
PUT /index/type/id
{
"json数据"
}
PUT /ecommerce/product/1
{
"name" : "gaolujie yagao",
"desc" : "gaoxiao meibai",
"price" : 30,
"producer" : "gaolujie producer",
"tags": [ "meibai", "fangzhu" ]
}
{
"_index": "ecommerce",
"_type": "product",
"_id": "1",
"_version": 1,
"result": "created",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"created": true
}
PUT /ecommerce/product/2
{
"name" : "jiajieshi yagao",
"desc" : "youxiao fangzhu",
"price" : 25,
"producer" : "jiajieshi producer",
"tags": [ "fangzhu" ]
}
PUT /ecommerce/product/3
{
"name" : "zhonghua yagao",
"desc" : "caoben zhiwu",
"price" : 40,
"producer" : "zhonghua producer",
"tags": [ "qingxin" ]
}
es会自动建立index和type,不需要提前创建,而且es默认会对document每个field都建立倒排索引,让其可以被搜索
(2)查询商品:检索文档
GET /index/type/id
GET /ecommerce/product/1
{
"_index": "ecommerce",
"_type": "product",
"_id": "1",
"_version": 1,
"found": true,
"_source": {
"name": "gaolujie yagao",
"desc": "gaoxiao meibai",
"price": 30,
"producer": "gaolujie producer",
"tags": [
"meibai",
"fangzhu"
]
}
}
(3)修改商品:替换文档
PUT /ecommerce/product/1
{
"name" : "jiaqiangban gaolujie yagao",
"desc" : "gaoxiao meibai",
"price" : 30,
"producer" : "gaolujie producer",
"tags": [ "meibai", "fangzhu" ]
}
{
"_index": "ecommerce",
"_type": "product",
"_id": "1",
"_version": 1,
"result": "created",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"created": true
}
{
"_index": "ecommerce",
"_type": "product",
"_id": "1",
"_version": 2,
"result": "updated",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"created": false
}
PUT /ecommerce/product/1
{
"name" : "jiaqiangban gaolujie yagao"
}
替换方式有一个不好,即使必须带上所有的field,才能去进行信息的修改
(4)修改商品:更新文档
POST /ecommerce/product/1/_update
{
"doc": {
"name": "jiaqiangban gaolujie yagao"
}
}
{
"_index": "ecommerce",
"_type": "product",
"_id": "1",
"_version": 8,
"result": "updated",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
}
}
(5)删除商品:删除文档
DELETE /ecommerce/product/1
{
"found": true,
"_index": "ecommerce",
"_type": "product",
"_id": "1",
"_version": 9,
"result": "deleted",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
}
}
{
"_index": "ecommerce",
"_type": "product",
"_id": "1",
"found": false
}
搜索方式
1、query string search
搜索全部商品:
GET /ecommerce/product/_search
took:耗费了几毫秒 timed_out:是否超时,这里是没有 _shards:数据拆成了5个分片,所以对于搜索请求,会打到所有的primary shard(或者是它的某个replica shard也可以) hits.total:查询结果的数量,3个document hits.max_score:score的含义,就是document对于一个search的相关度的匹

本文深入浅出地介绍了Elasticsearch的基础知识,包括其功能特性、适用场景、核心概念及分布式架构。从全文检索、数据分析到分布式处理,Elasticsearch为海量数据提供近实时的搜索和分析能力。文章还详细解析了ES的安装、配置、CRUD操作及高级搜索技巧,适合初学者快速上手。
最低0.47元/天 解锁文章
633

被折叠的 条评论
为什么被折叠?



