杭电3045(斜率dp)

Picnic Cows

Time Limit: 8000/4000 MS (Java/Others)
Memory Limit: 32768/32768 K (Java/Others)

Problem Description

It’s summer vocation now. After tedious milking, cows are tired and wish to take a holiday. So Farmer Carolina considers having a picnic beside the river. But there is a problem, not all the cows consider it’s a good idea! Some cows like to swim in West Lake, some prefer to have a dinner in Shangri-la ,and others want to do something different. But in order to manage expediently, Carolina coerces all cows to have a picnic!
Farmer Carolina takes her N (1

Input

The input contains multiple cases.
For each test case, the first line has two integer N, T indicates the number of cows and amount of Safe-base line.
Following n numbers, describe the Moo~ of N cows , 1st is cow 1 , 2nd is cow 2, and so on.

Output

One line for each test case, containing one integer means the minimum of the TOTAL reduced Moo~s to group N cows to several teams.

Sample Input

7 3
8 5 6 2 1 7 6

Sample Output

8

思路:

题意:

  • 有n只奶牛,每只奶牛有有一个满意度
  • 要对这n只奶牛进行分组,每组奶牛数量不少于t
  • 一旦分组,组内所有奶牛的满意度都会变为最小的满意度
  • 求所有组内满意度变化的最小值

抽象:

  • 对n个整数分组,每组至少 t 个数字
  • 每组的价值为:组内的每个数 - 组内最小的数
  • 求所有分组的价值总和的最小值

方法:

  • 将所有的整数排序,这样能使得价值最小
  • dp[i]表示:前 i 个数的总价值
  • sum[i]表示:前 i 个数的和
  • a[i]表示:第 i 个数的值

递推公式:

  • 每一个数都减去最小的那个数,结果为区间和-最小值 * 区间长度
  • dp[i] = dp[j] + sum[i] - sum[j] - a[j + 1] * (i - j),j < i - t + 1
  • 化成斜率dp形式
  • 分子为:dp[j] - sum[j] + j * a[j + 1] - (dp[k] - sum[k] + k * a[k + 1])
  • 分母为:a[j + 1] - a[k + 1]
  • 斜率为:i

注意:

  • i - t + 1 > t,目的是保证第一组元组至少有 t 个
  • 数组用long long

AC代码:

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <queue>
using namespace std;
#define maxn 400010
long long sum[maxn];//前i个数和 
long long dp[maxn];//前i个数总价值 
long long a[maxn];//输入的数 
long long q[maxn];//队列 

long long dt(int i,int j)//递推公式 
{
    return dp[j]+sum[i]-sum[j]-a[j+1]*(i-j);
}

long long up(int j,int k)//分子 
{
    return dp[j]-sum[j]+j*a[j+1]-(dp[k]-sum[k]+k*a[k+1]);
}

long long down(int j,int k)//分母 
{
    return a[j+1]-a[k+1];
}

int main()
{
    int head,tail;//队头队尾 
    int n,t;
    while(cin>>n>>t)
    {
        dp[0]=sum[0]=0;
        a[0]=0;
        for(int i=1;i<=n;i++)
        {
            cin>>a[i];//输入数 
        }
        sort(a+1,a+n+1);//排序 
        for(int i=1;i<=n;i++)
        {
            sum[i]=sum[i-1]+a[i];//前i项和 
        }
        head=tail=0;
        q[tail++]=0;
        for(int i=1;i<=n;i++)
        {
            while(head+1<tail && up(q[head+1],q[head])<=i*down(q[head+1],q[head]))
            {
                head++;
            }
            dp[i]=dt(i,q[head]);
            int tmp=i-t+1;
            if(tmp<t) continue;//保证第一组元组至少有t个 
            while(head+1<tail && up(tmp,q[tail-1])*down(q[tail-1],q[tail-2])<=up(q[tail-1],q[tail-2])*down(tmp,q[tail-1]))
            {
                tail--;
            }
            q[tail++]=tmp;
        }
        cout<<dp[n]<<endl;
    }
    return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值