LeetCode-4. Median of Two Sorted Arrays
There are two sorted arrays nums1 and nums2 of size m and n respectively.
Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
Example 1:
nums1 = [1, 3] nums2 = [2] The median is 2.0
Example 2:
nums1 = [1, 2] nums2 = [3, 4] The median is (2 + 3)/2 = 2.5
此题采用分治算法最优,将nums1和nums2进行分割,得到left_part和right_part
left_part | right_part
nums1[0], nums1[1], ..., nums1[i-1] | nums1[i], nums1[i+1], ..., nums1[m-1]
nums2[0], nums2[1], ..., nums2[j-1] | nums2[j], nums2[j+1], ..., nums2[n-1]
使得
1) len(left_part) == len(right_part)
2) max(left_part) <= min(right_part)
为了保证以上条件,必须确保
(1) i + j == m - i + n - j (or: m - i + n - j + 1)
if n >= m, we just need to set: i = 0 ~ m, j = (m + n + 1)/2 - i
(2) nums2[j-1] <= nums1[i] and nums1[i-1] <= nums2[j]
具体的思路见leetcode解法
class Solution
{
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2)
{
int m = nums1.size(), n = nums2.size();
if (m > n)return findMedianSortedArrays(nums2, nums1);
int i, j, imin = 0, imax = m, half = (m + n + 1) / 2;
while (imin <= imax)
{
i = (imin + imax) / 2;
j = half - i;
if (i<imax&&nums2[j - 1]>nums1[i])imin = imin + 1;
else if (i > imin&&nums1[i - 1] > nums2[j])imax = imax - 1;
else
{
int maxLeft = 0;
if (i == 0)maxLeft = nums2[j - 1];
else if (j == 0)maxLeft = nums1[i - 1];
else maxLeft = max(nums2[j - 1], nums1[i - 1]);
if ((m + n) % 2 == 1)return maxLeft;
int minRight = 0;
if (i == m)minRight = nums2[j];
else if (j == n)minRight = nums1[i];
else minRight = min(nums2[j], nums1[i]);
return (maxLeft + minRight) / 2.0;
}
}
return -1;
}
};