从我们编写的一个小的spark demo程序开始 :
val lines = sparkContext.textFile("")val words = lines.flatMap(line => line.split("\t"))val pairs = words.map(word => (word,1))val counts = pairs.reduceByKey(_+_)counts.foreach(count +. println(count_1+"_"+count_2))
在SparkContext中textFile方法源码如下:
/*** Read a text file from HDFS, a local file system (available on all nodes), or any* Hadoop-supported file system URI, and return it as an RDD of Strings.** 首先HadoopFile方法的调用会创建一个HadoopRDD , 该RDD中的元素就是一个一个的(key,value),其中key就是文本行的行号,value就是一行的文本值* 然后调用HadoopRDD的map()方法 , 该方法就会将HadoopRDD中的key移除掉 , 只保留value* 最后就形成一个只包含文本行的MapPartitionRDD*/def textFile(path: String, minPartitions: Int = defaultMinPartitions): RDD[String] = {assertNotStopped()hadoopFile(path, classOf[TextInputFormat], classOf[LongWritable], classOf[Text],minPartitions).map(pair => pair._2.toString).setName(path)}
这其中的原因已经在代码中说明 , 这其中会调用hadoopFile方法 , 源码如下 :
/** Get an RDD for a Hadoop file with an arbitrary InputFormat** '''Note:''' Because Hadoop's RecordReader class re-uses the same Writable object for each* record, directly caching the returned RDD or directly passing it to an aggregation or shuffle* operation will create many references to the same object.* If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first* copy them using a `map` function.*/def hadoopFile[K, V](path: String,inputFormatClass: Class[_ <: InputFormat[K, V]],keyClass: Class[K],valueClass: Class[V],minPartitions: Int = defaultMinPartitions): RDD[(K, V)] = {assertNotStopped()// A Hadoop configuration can be about 10 KB, which is pretty big, so broadcast it.// 将Hadoop的配置信息作为广播变量 , 方便在每个节点上都可以读取到相同的Hadoop配置信息val confBroadcast = broadcast(new SerializableWritable(hadoopConfiguration))val setInputPathsFunc = (jobConf: JobConf) => FileInputFormat.setInputPaths(jobConf, path)// 创建HadoopRDD对象new HadoopRDD(this,confBroadcast,Some(setInputPathsFunc),inputFormatClass,keyClass,valueClass,minPartitions).setName(path)}
对于创建好的HadoopRDD并经过flatMap算子操作之后形成的算子最后调用reduceByKey的时候会经过一到隐式转换 , 因为在RDD中是没有reduceByKey方法的,
因此在调用reduceByKey时候其实是调用如下的方法 :
/*** 其实在RDD里面是没有reduceByKey的 , 因此对RDD调用reduceByKey()方法时会触发scala的隐式转换;此时就会在作用域内寻找隐式转换* 因此就会在RDD中找到rddToPairRDDFunction()方法,然后调用RDD转换为PairRDDFunction , 在PairRDDFunction中就会调用reduceByKey方法*/implicit def rddToPairRDDFunctions[K, V](rdd: RDD[(K, V)])(implicit kt: ClassTag[K], vt: ClassTag[V], ord: Ordering[K] = null): PairRDDFunctions[K, V] = {new PairRDDFunctions(rdd)}
从上面的源码中可以看出最后真正的reduceBykey的方法在PairRDDFunctions中 , 源码如下 :
/*** Merge the values for each key using an associative reduce function. This will also perform* the merging locally on each mapper before sending results to a reducer, similarly to a* "combiner" in MapReduce.*/def reduceByKey(partitioner: Partitioner, func: (V, V) => V): RDD[(K, V)] = {combineByKey[V]((v: V) => v, func, func, partitioner)}/*** Merge the values for each key using an associative reduce function. This will also perform* the merging locally on each mapper before sending results to a reducer, similarly to a* "combiner" in MapReduce. Output will be hash-partitioned with numPartitions partitions.*/def reduceByKey(func: (V, V) => V, numPartitions: Int): RDD[(K, V)] = {reduceByKey(new HashPartitioner(numPartitions), func)}/*** Merge the values for each key using an associative reduce function. This will also perform* the merging locally on each mapper before sending results to a reducer, similarly to a* "combiner" in MapReduce. Output will be hash-partitioned with the existing partitioner/* parallelism level.*/def reduceByKey(func: (V, V) => V): RDD[(K, V)] = {reduceByKey(defaultPartitioner(self), func)}
最后 , 不管经过多少transformation算子操作 , 若是没有action的算子操作的话, 那么是不会运行transformation算子的 , 因此foreach方法其实就是触发上面所有算子的操作 ,
而RDD的fereach的源码如下 :
/*** Applies a function f to all elements of this RDD.* 若是一个RDD调用了action的算子 , 比如foreach方法 , 那么其实就会触发job的运行 , 最后其实就会调用SparkContext的runjob方法*/def foreach(f: T => Unit) {val cleanF = sc.clean(f)// 调用SparkContext的runjob方法sc.runJob(this, (iter: Iterator[T]) => iter.foreach(cleanF))}
最后真正调用的就是SparkContext的runjob方法 进行真正的任务运行 :
/*** Run a function on a given set of partitions in an RDD and pass the results to the given* handler function. This is the main entry point for all actions in Spark. The allowLocal* flag specifies whether the scheduler can run the computation on the driver rather than* shipping it out to the cluster, for short actions like first().*/def runJob[T, U: ClassTag](rdd: RDD[T],func: (TaskContext, Iterator[T]) => U,partitions: Seq[Int],allowLocal: Boolean,resultHandler: (Int, U) => Unit) {if (stopped) {throw new IllegalStateException("SparkContext has been shutdown")}val callSite = getCallSiteval cleanedFunc = clean(func)logInfo("Starting job: " + callSite.shortForm)if (conf.getBoolean("spark.logLineage", false)) {logInfo("RDD's recursive dependencies:\n" + rdd.toDebugString)}//最重要的就是这一行代码了 , 调用SparkContext中的DAGScheduler组件运行一个jobdagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, allowLocal,resultHandler, localProperties.get)progressBar.foreach(_.finishAll())rdd.doCheckpoint()}
其实SparkContext中运行job的组件就是之前讲到的DAGScheduler了 , 运行一个job就需要stage的划分了 , 下面就是stage算法划分了

731

被折叠的 条评论
为什么被折叠?



