Computational Motif Finding

本文介绍了如何使用计算方法寻找基因表达调控中的转录因子结合位点。通过分析共表达基因的上游序列,可以识别出潜在的转录因子及其调控模式。文章探讨了输入数据的特点、面临的挑战以及转录因子基序的表示方法。

Computational Motif Finding

We can use microarray or SAGE detects the expression of every gene at a certain cell state. We can also use clustering to find genes that are co-expressed (potentially share regulation). To decode gene regulation, look upstream regions of genes always expressed together. Proteins conbind to the DNA by recognizing specific DNA sequence. Some will turn on the gene. Some will turn off the gene. Some control the amount of gene expression. These proteins are called TFs. They can regulate the expression of nearby gene. TFs bind motifs. Motifs can be computational discovered when there are enough cases for machine learning.


Input data: 

Upstream sequences of gene expression profile cluster.

20-800 sequences, each 300-5000 bps long.


Output: 

Enriched sequence patterns (motifs)


Ultimate goals: 

1. Which TFs are involved and their binding motifs and effects (activate/enhance/repress gene expresssion)

2. Which genes are regulated by this TF, why is there disease when a TF goes wrong?

3. Are there binding partner / competitor for a TF?


Challenges: 

1. Where/what the signal.The motif should be abundant and abundant with significance.

2. Double stranded. DNAMotif appears in both strands

3. Base substitutions.Proteins allow mistakes. TF is the protein that recognize sequence which is kind of a structure, as roughly, when the structure are right even there are some mismatches here and there. Sequences do not have to match the motif perfectly, base substitutions are allowed.

4. Variable motif copies.Some sequences do not have the motif. Some have multiple copies of the motif. A group of gene are co-expressed, but they may not be co-regulated. Co-expression doesn't mean co-regulation.


TF Motif Representation: 

1. Sometimes we use degenerate motif. (IUPAC)

2. Position weight matrix (PWM): need score cutoffSome sequence in front of the gene (whether it is the motif or not). It is not so clear, because every sequence will be able to get a score.

Segment ATGCAGCT score = p(generate ATGCAGCT from motif matrix)/p(generate ATGCAGCT from background)


A Word on Sequence Logo: 

SeqLogo consists of stacks of symbols, one stack for each position in the sequence.The overall height of the stack indicates the sequence conservation at that position.The height of symbols within the stack indicates the relative frequency of nucleic acid at that position


TF Motif Database:

--- JASPAR: literature curation

--- UniProbe: Protein Binding Microarrays ( very popular,Badis et al, Science 2009)

--- Factor Book and HOMER:--ChIP-seq





内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值