RNA-seq Differential Expression, Alternative Splicing, Transcript Assembly and Gene Fusion

本文介绍了RNA-seq数据分析的关键方面,包括如何评估差异表达,如通过估计变异性来计算p值;探讨了读取分布的泊松分布和负二项分布模型;并提到了一些常用的差异表达分析工具,如Cufflinks、LIMMA-VOOM和DESeq2。此外,还讨论了RPKM、FPKM和TPM等表达指数的优缺点。RNA-seq的剪接变异分析中,MATS工具用于多变量分析,而Tophat则用于分配reads到剪接异构体。在转录组装部分,介绍了参考依赖性和de novo组装方法。最后,简述了在癌症样本中常见的基因融合现象及其检测的挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

RNA-seq Differential Expression:

     Gene X’s expression in condition A doubles expression in condition B. But how reliable is this? What’s the chance of observing it by rendom? All comes to variation estimation! How to meassure the variance between different biological replicates. Once you have the variation estimation, you’re able to assign a p-value for expression changes. Variation can be estimated if you have many biological replicates.But in practice, we only have 2-3 replicates. What we can do next is proper statistical models.

Sequencing Read Distribution:

1. Poisson distribution:λ=E(X)=Var(X) 

The easiest model for RNA-seq reads count is Poisson distribution.

Assumption : Mean = Variance

But: sequencing data is over-dispersed,not only RNA-seq  (Mean<Variance)

2. Negative binomial: X ~ NB(r;p)( 2 parameters : r,p)

Definition : number of successes before r failures occur, if Pb(each success) is p .

Every gene has 2 parameters : mean and variance.

Negative binomial for RNA-seq : Kij~NB(μijij2)

Variance estimated by borrowing information from all the genes - hierarchical models

Test whether μi  is the same for gene i between samples j.

Tools used in differential expression:

Cufflinks: versatile(RPKM/FPKM)

LIMMA-VOOM and DESeq: better variance estimates(TPM)

EdgeR; DESeq/DESeq2

Expression Index:

1. RPKM (Reads per kilobase of transcript per million reads of library)

    Corrects for coverage, gene length

    1 RPKM ~ 0.3 -1 transcript / cell

    Comparable between different genes within the same dataset

    TopHat / Cufflinks

2. FPKM (Fragments), PE libraries, RPKM/2

3. TPM (transcripts per million)

     Normalizes to transcript copies instead of reads

     Longer transcripts have more reads

     RSEM, HTSeq

Note: TPM is not able to compare expression of different genes across different samples. We should do differential expression on RPKM or FPKM

RNA-seq Alternative Splicing:

Different AS events:

 

TopHat: Assign reads to splice isoforms

MATS: Multivariate Analysis of Transcript Splicing

Transcript Assembly

Reference-based assembly: Cufflinks

1. Read mapping using Tophat

2. Construct a graph of reads

Incompatiblefragments (reads) means they are definitely NOT from the same transcript

3. Identify the minimum # paths that cover all reads (each path is one possible transcript)

4. Transcript abundance estimation

De novo assembly: Trinity

De bruijn graph (1946):

Used in the earliest human genome assemblies

Standard algorithm for genome assembly

A sequence of length k can be represented as an edge between two sequences (length k-1)

Gene Fusion:

More seen in cancer samples

Still a bit hard to call

TopHatFusion in TopHat2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值