原文链接:
//blog.youkuaiyun.com/NNNNNNNNNNNNY/article/details/54577123
知乎上CS231n课程翻译系列 翻译的笔记非常好,为了方便查看,这里把所有目录列于此,并给出链接。
- Python Numpy教程(全篇)
- Python
- 基本数据类型
- 容器(列表, 字典, 集合, 元组)
- 函数
- 类
- Numpy
- 数组
- 访问数组
- 数据类型
- 数组计算
- 广播
- SciPy
- 图像操作
- MATLAB文件
- 点之间的距离
- Matplotlib
- 绘制图形
- 绘制多个图形
- 图像
- Python
- 图像分类笔记
- 线性分类笔记
- 最优化笔记
- 反向传播笔记 (全篇)
- 简介
- 简单表达式和理解梯度
- 复合表达式,链式法则,反向传播
- 直观理解反向传播
- 模块:Sigmoid例子
- 反向传播实践:分段计算
- 回传流中的模式
- 用户向量化操作的梯度
- 小结
- 神经网络笔记1
- 神经网络笔记2(全篇)
- 设置数据和模型
- 数据预处理
- 权重初始化
- 批量归一化(Batch Normalization)
- 正则化(L2/L1/Maxnorm/Dropout)
- 损失函数
- 小结
- 设置数据和模型
- 神经网络笔记3
- 卷积神经网络笔记 (全篇)
- 结构概述
- 用来构建卷积神经网络的各种层
- 卷积层
- 汇聚层
- 归一化层
- 全连接层
- 将全连接层转化成卷积层
- 卷积神经网络的结构
- 层的排列规律
- 层的尺寸设置规律
- 案例学习(LeNet / AlexNet / ZFNet / GoogLeNet / VGGNet)
- 计算上的考量
- 拓展资源