CodeForces 669D

本文解析了一道ACM竞赛中的D题,介绍了题目背景、核心思路及代码实现。通过观察男女位置变化规律,利用代表男生的位置变化来简化问题,最终输出男生的新位置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

诶,没想到这题是D题,不错不错,我居然做出来了。

题意:给你n对男女围成一个圈然后有q个询问,询问有两种当第一个数为1是后面一个数为x代表所有男生移动x步,而如果第一个数为2代表第一个女生对应的男生和第二个女生对应的男生互换位置,后面所有都一样互换,即奇偶互换,注意女生一直不动,最后输出所有男生改变后的位置。

思路:开始的时候没注意女生一直不动理解错了题后来改正后发现这题还是比较easy的,首先我们要知道其中几个规律,即奇数的男生之间差距不变,他们变动是一致的,偶数的男生也一样,我们就可以定位1号和2号最为代表,然后记录移动的步数,当出现查询2时若1号男生在偶数位置就减一步奇数加一步,2号相反。最后以他两为始逐步输出其他男生位置即可。

代码如下:

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
#define INF 0x3f3f3f3f
int d[1000005];
int main()
{
  int n,q,ssum=2,sum=1,a,x;
  scanf("%d%d",&n,&q);
  for(int i=0;i<q;i++)
  {
    scanf("%d",&a);
    if(a==1)
    {
      scanf("%d",&x);
      sum+=x;
      while(sum>n) sum-=n;
      while(sum<=0) sum+=n;
      ssum+=x;
      while(ssum>n) ssum-=n;
      while(ssum<=0) ssum+=n;
    }
    else
    {
      if(sum%2)
      {
        sum++;
      }
      else
      {
        sum--;
      }
      if(ssum%2)
      {
        ssum++;
      }
      else ssum--;
      if(sum<=0) sum=n;
      if(sum>n) sum=1;
      if(ssum<=0) ssum=n;
      if(ssum>n) ssum=1;
    }
  }
  for(int i=1;i<=n;i++)
  {
    d[i]=i;
  }
  int ans=0,cnt=0;
  //printf("%d %d\n",sum,ssum);
  for(int i=1;i<=n;i+=2)
  {
    d[sum]=i;
    sum+=2;
    sum%=n;
    if(sum==0) sum=n;
  }
  for(int i=2;i<=n;i+=2)
  {
    d[ssum]=i;
    ssum+=2;
    ssum%=n;
    if(ssum==0) ssum=n;
  }
  for(int i=1;i<n;i++)
  {
    printf("%d ",d[i]);
  }
  printf("%d\n",d[n]);
}



### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值