下面的文字来自于网络,最后给出引用位置。
一、动态规划算法
事实上,最长公共子序列问题也有最优子结构性质。
记:
Xi = 即X序列的前i个字符(1<= i <= m)(前缀)
Yj = 即Y序列的前j个字符(1<= j <= m)(前缀)
假定Z = 是LCS(X,Y)中的一个。
·若xm = yn(最后一个字符相同),则不难用反正法证明:该字符必是X与Y的任一最长公共子序列Z(设长度为k)的最后一个字符,即有zk = xm = yn,且显然有Zk-1∈LCS(Xm-1,Yn-1),即Z的前缀Zk-1是Xm-1与Yn-1的最长公共子序列。此时,问题化归成求Xm-1与Yn-1的LCS(LCS(X,Y))的长度等于LCS(Xm-1,Yn-1)的长度加1)。
·
若xm≠yn,则亦不难用反证法证明:要么Z∈LCS(Xm-1, Y),要么Z∈LCS(X , Yn-1)。由于zk≠xm与zk≠yn其中至少有一个必成立,若zk≠xm则有Z∈LCS(Xm-1 , Y);类似的,若zk≠yn 则有Z∈LCS(X , Yn-1)。此时,问题化归成求Xm-1与Y的LCS及X与Yn-1的LCS。LCS(X , Y)的长度为:max{LCS(Xm-1 , Y)的长度, LCS(X , Yn-1)的长度}。
由于上述当xm≠yn的情况中,求LCS(Xm-1 , Y)的长度与LCS(X , Yn-1)的长度,这两个问题不是相互独立的:两者都需要求LCS(Xm-1,Yn-1)的长度。另外两个序列的LCS中包含了两个序列的前缀的LCS,故问题具有最优子结构性质考虑用动态规划法。
也就是说,解决这个LCS问题,你要求三个方面的东西:
1> LCS(Xm-1,Yn-1)+1;
2> LCS(Xm-1,Y),LCS(X,Yn-1);
3> max{LCS(Xm-1,Y),LCS(X,Yn-1)};
二、动态规划算法解LCS问题
2.1 最长公共子序列的结构
最长公共子序列的结构有如下表示:
设序列X=和Y=的一个最长公共子序列Z=,则:
1> 若 xm=yn,则 zk=xm=yn,且Zk-1是Xm-1和Yn-1的最长公共子序列;
2> 若 xm≠yn且 zk≠xm ,则 Z是 Xm-1和 Y的最长公共子序列;
3> 若 xm≠yn且 zk≠yn ,则 Z是 X和 Yn-1的最长公共子序列;
其中Xm-1=,Yn-1=,Zk-1=。
2.2 子问题的递归结构
由最长公共子序列问题的最优子结构性质可知,要找出
Xm=和
Yn=的最长公共子序列,可按如下方式递归的进行:
·当xm = yn时,找出Xm-1和Yn-1的最长公共子序列,然后在其尾部加上xm或yn,即可得到X和Y的一个最长公共子序列;
·
当xm≠yn时,必须解两个子问题,即找出Xm-1和Y的一个最长公共子序列及X和Yn-1的一个最长公共子序列。这两个公共子序列中较长者即为X和Y的一个最长公共子序列。
由此递归结构容易看到最长公共子序列问题具有子问题重叠性质。例如,在计算X和Y的最长公共子序列时,可能要计算出X和Yn-1以及Xm-1和Y的最长公共子序列。而这两个子问题都包含一个公共子问题,即计算Xm-1和Yn-1的最长公共子序列。
与矩阵乘积最优计算次序问题类似,我们来建立子问题的最优值的递归关系。用c[i,j]记录序列Xi和Yj的最长公共子序列的长度,其中Xi=,Yj=。当i = 0或j = 0时,空序列是Xi和Yj的最长公共子序列,故c[i,j] = 0。其他情况下,可得递归关系如下所示:
2.3 计算最优值
直接利用上节节末的递归式,我们将很容易就能写出一个计算c[i,j]的递归算法,但其计算时间是随输入长度指数增长的。由于在所考虑的子问题空间中,总共只有O(m*n)个不同的子问题,因此,用动态规划算法自底向上地计算最优值能提高算法的效率。
计算最长公共子序列长度的动态规划算法LCS_Length(X,Y),以序列X=和Y=作为输入。输出两个数组c[0..m ,0..n]和b[1..m ,1..n]。其中c[i,j]存储Xi与Yj的最长公共子序列的长度,b[i,j]记录指示c[i,j]的值是由哪一个子问题的解达到的,这在构造最长公共子序列时要用到。最后,X和Y的最长公共子序列的长度记录于c[m,n]中。
伪代码如下所示。
- Procedure LCS_LENGTH(X,Y);LCS_LENGTH(X,Y);
- begin
- m:=length[X];
- n:=length[Y];
- for i:=1 to m do c[i,0]:=0;
- for j:=1 to n do c[0,j]:=0;
- for i:=1 to m do
- for j:=1 to n do
- if x[i]=y[j] then
- begin
- c[i,j]:= c[i-1,j -1]+ 1;
- b[i,j]:="↖";
- end
- else if c[i -1,j]≥ c[i,j -1] then
- begin
- c[i,j]:= c[i-1,j];
- b[i,j]:= "↑" ;
- end
- else
- begin
- c[i,j]:= c[j-1];
- b[i,j]:="←"
- end;
- return(c,b);
- end
由算法LCS_Length计算得到的数组b 可用于快速构造序列X=和Y=的最长公共子序列。首先从b[m,n]开始,沿着其中的箭头所指的方向在数组b中搜索。
·当 b[i,j]中遇到"↖"时(意味着 xi=yi是LCS的一个元素 ),表示 Xi与 Yj的最长公共子序列是由 子序列Xi-1与 Yj-1的最长公共子序列在尾部加上xi得到的子序列;
·当 b[i,j]中遇到"↑" 时,表示 Xi与 Yj的最长公共的最长公共子序列和Xi-1与 Yj的最长公共子序列 相同;
·当b[i,j]中遇到"←" 时,表示Xi与Yj的最长公共子序列和Xi与Yj-1的最长公共子序列相同;
这种方法是按照反序来查找LCS的每一个元素的。由于每个数组单元的计算花费O(1)时间,算法LCS_Length耗时O(mn)。
2.4 构造最长公共子序列
下面的算法LCS(b,X,i,j)实现根据b的内容打印出Xi与Yi的最长公共子序列。通过算法的调用LCS(b,X,length[X],length[Y]),便可打印出序列X和Y的最长公共子序列。
伪代码如下所示。
- Procedure LCS(b,X,i,j);
- begin
- if i=0 or j=0 then return;
- if b[i,j]=”↖” then
- begin
- LCS(b,X,i-1,j-1);
- print(x[i]); {打印x[i]}
- end
- else if b[i,j]=”↑” then LCS(b,X,i-1,j)
- else LCS(b,X,i,j-1);
- end;
在LCS算法中,每一次递归调用使i或j减1,因此算法的时间复杂度为O(m+n)。
例如,设所给的两个序列为X=和Y=。由算法LCS_LENGTH和LCS计算出的结果如下图所示:
我来说明下此图(参考算法导论)。在序列X={A,B,C,B,D,A,B}和 Y={B,D,C,A,B,A}上,由LCS_LENGTH计算出的表c和b。第i行和第j列中的方块包含了c[i,j]的值以及指向b[i,j]的箭头。在c[7,6]的项4,表的右下角为X和Y的一个LCS
的长度。对于i,j>0,项c[i,j]仅依赖于是否有xi=yi,及项c[i-1,j]和c[i,j-1]的值,这几个项都在c[i,j]之前计算。为了重构一个LCS的元素,从右下角开始跟踪b[i,j]的箭头即可,这条路径标示为阴影,这条路径上的每一个“↖”对应于一个使xi=yi为一个LCS的成员的项(高亮标示)。
所以根据上述图所示的结果,程序将最终输出:“B C B A”。
让我对动态规划求LCS问题,有了更加深刻的理解。感谢作者!
根据以上思路,写出代码如下所示。
- //只能打印一个最长公共子序列
- #include <iostream>
- using namespace std;
-
- const int X = 100, Y = 100; //串的最大长度
- char result[X+1]; //用于保存结果
- int count=0; //用于保存公共最长公共子串的个数
-
- /*功能:计算最优值
- *参数:
- * x:字符串x
- * y:字符串y
- * b:标志数组
- * xlen:字符串x的长度
- * ylen:字符串y的长度
- *返回值:最长公共子序列的长度
- *
- */
- int Lcs_Length(string x, string y, int b[][Y+1],int xlen,int ylen)
- {
- int i = 0;
- int j = 0;
-
- int c[X+1][Y+1];
- for (i = 0; i<=xlen; i++)
- {
- c[i][0]=0;
- }
- for (i = 0; i <= ylen; i++ )
- {
- c[0][i]=0;
- }
- for (i = 1; i <= xlen; i++)
- {
-
- for (j = 1; j <= ylen; j++)
- {
- if (x[i - 1] == y[j - 1])
- {
- c[i][j] = c[i-1][j-1]+1;
- b[i][j] = 1;
- }
- else
- if (c[i-1][j] > c[i][j-1])
- {
- c[i][j] = c[i-1][j];
- b[i][j] = 2;
- }
- else
- if(c[i-1][j] <= c[i][j-1])
- {
- c[i][j] = c[i][j-1];
- b[i][j] = 3;
- }
-
- }
- }
- cout << "计算最优值效果图如下所示:" << endl;
- for(i = 1; i <= xlen; i++)
- {
- for(j = 1; j < ylen; j++)
- {
- cout << c[i][j] << " ";
- }
- cout << endl;
- }
- return c[xlen][ylen];
- }
-
- void Display_Lcs(int i, int j, string x, int b[][Y+1],int current_Len)
- {
- if (i ==0 || j==0)
- {
- return;
- }
- if(b[i][j]== 1)
- {
- current_Len--;
- result[current_Len]=x[i- 1];
- Display_Lcs(i-1, j-1, x, b, current_Len);
- }
- else
- {
- if(b[i][j] == 2)
- {
- Display_Lcs(i-1, j, x, b, current_Len);
- }
- else
- {
- if(b[i][j]==3)
- {
- Display_Lcs(i, j-1, x, b, current_Len);
- }
- else
- {
- Display_Lcs(i-1,j,x,b, current_Len);
- }
- }
- }
- }
-
- int main(int argc, char* argv[])
- {
- string x = "ABCBDAB";
- string y = "BDCABA";
- int xlen = x.length();
- int ylen = y.length();
-
- int b[X + 1][Y + 1];
-
- int lcs_max_len = Lcs_Length( x, y, b, xlen,ylen );
- cout << lcs_max_len << endl;
-
- Display_Lcs( xlen, ylen, x, b, lcs_max_len );
-
- //打印结果如下所示
- for(int i = 0; i < lcs_max_len; i++)
- {
- cout << result[i];
- }
- cout << endl;
- return 0;
- }
运行结果如下所示。
由于有时并不是只有一个最长公共子序列,所以,对上面的代码进行改进,增加一个数组保存结果等....代码如下所示。
- //求取所有的最长公共子序列
- #include <iostream>
- using namespace std;
-
- const int X = 100, Y = 100; //串的最大长度
- char result[X+1]; //用于保存结果
- int count=0; //用于保存公共最长公共子串的个数
-
- /*功能:计算最优值
- *参数:
- * x:字符串x
- * y:字符串y
- * b:标志数组
- * xlen:字符串x的长度
- * ylen:字符串y的长度
- *返回值:最长公共子序列的长度
- *
- */
- int Lcs_Length(string x, string y, int b[][Y+1],int xlen,int ylen)
- {
- int i = 0;
- int j = 0;
-
- int c[X+1][Y+1];
- for (i = 0; i<=xlen; i++)
- {
- c[i][0]=0;
- }
- for (i = 0; i <= ylen; i++ )
- {
- c[0][i]=0;
- }
- for (i = 1; i <= xlen; i++)
- {
-
- for (j = 1; j <= ylen; j++)
- {
- if (x[i - 1] == y[j - 1])
- {
- c[i][j] = c[i-1][j-1]+1;
- b[i][j] = 1;
- }
- else
- if (c[i-1][j] > c[i][j-1])
- {
- c[i][j] = c[i-1][j];
- b[i][j] = 2;
- }
- else
- if(c[i-1][j] < c[i][j-1])
- {
- c[i][j] = c[i][j-1];
- b[i][j] = 3;
- }
- else
- {
- c[i][j] = c[i][j-1]; //或者c[i][j]=c[i-1][j];
- b[i][j] = 4;
- }
- }
- }
- cout << "计算最优值效果图如下所示:" << endl;
- for(i = 1; i <= xlen; i++)
- {
- for(j = 1; j < ylen; j++)
- {
- cout << c[i][j] << " ";
- }
- cout << endl;
- }
- return c[xlen][ylen];
- }
-
- /*功能:计算最长公共子序列
- *参数:
- * xlen:字符串x的长度
- * ylen:字符串y的长度
- * x :字符串x
- * b:标志数组
- * current_len:当前长度
- * lcs_max_len:最长公共子序列长度
- *
- */
- void Display_Lcs(int i, int j, string x, int b[][Y+1],int current_len,int lcs_max_len)
- {
- if (i ==0 || j==0)
- {
- for(int s=0; s < lcs_max_len; s++)
- {
- cout << result[s];
- }
- cout<<endl;
- count++;
- return;
- }
- if(b[i][j]== 1)
- {
- current_len--;
- result[current_len]=x[i- 1];
- Display_Lcs(i-1, j-1, x, b,current_len,lcs_max_len);
- }
- else
- {
- if(b[i][j] == 2)
- {
- Display_Lcs(i-1, j, x, b,current_len,lcs_max_len);
- }
- else
- {
- if(b[i][j]==3)
- {
- Display_Lcs(i, j-1, x, b,current_len,lcs_max_len);
- }
- else
- {
- Display_Lcs(i,j-1,x,b,current_len,lcs_max_len);
- Display_Lcs(i-1,j,x,b,current_len,lcs_max_len);
- }
- }
- }
- }
-
- int main(int argc, char* argv[])
- {
- string x = "ABCBDAB";
- string y = "BDCABA";
- int xlen = x.length();
- int ylen = y.length();
-
- int b[X + 1][Y + 1];
-
- int lcs_max_len = Lcs_Length( x, y, b, xlen,ylen );
- cout << lcs_max_len << endl;
-
- Display_Lcs( xlen, ylen, x, b, lcs_max_len, lcs_max_len );
- cout << "共有:" << count << "种";
-
-
- return 0;
- }
运行结果如下图所示。
如有问题,欢迎指出,谢谢!!