经典算法题每日演练——第十四题 Prim算法

本文介绍了图论中的最小生成树概念及Prim算法的具体实现过程,通过实例详细展示了如何使用Prim算法从带权无向图中构建最小生成树。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图论在数据结构中是非常有趣而复杂的,作为web码农的我,在实际开发中一直没有找到它的使用场景,不像树那样的频繁使用,不过还是准备

仔细的把图论全部过一遍。

一:最小生成树

       图中有一个好玩的东西叫做生成树,就是用边来把所有的顶点联通起来,前提条件是最后形成的联通图中不能存在回路,所以就形成这样一个

推理:假设图中的顶点有n个,则生成树的边有n-1条,多一条会存在回路,少一路则不能把所有顶点联通起来,如果非要在图中加上权重,则生成树

中权重最小的叫做最小生成树。

对于上面这个带权无向图来说,它的生成树有多个,同样最小生成树也有多个,因为我们比的是权重的大小。

 

二:Prim算法

求最小生成树的算法有很多,常用的是Prim算法和Kruskal算法,为了保证单一职责,我把Kruskal算法放到下一篇,那么Prim算法的思想

是什么呢?很简单,贪心思想。

如上图:现有集合M={A,B,C,D,E,F},再设集合N={}。

第一步:挑选任意节点(比如A),将其加入到N集合,同时剔除M集合的A。

第二步:寻找A节点权值最小的邻节点(比如F),然后将F加入到N集合,此时N={A,F},同时剔除M集合中的F。

第三步:寻找{A,F}中的权值最小的邻节点(比如E),然后将E加入到N集合,此时N={A,F,E},同时剔除M集合的E。

。。。

最后M集合为{}时,生成树就构建完毕了,是不是非常的简单,这种贪心做法我想大家都能想得到,如果算法配合一个好的数据结构,就会

如虎添翼。

 

三:代码

1. 图的存储

  图的存储有很多方式,邻接矩阵,邻接表,十字链表等等,当然都有自己的适合场景,下面用邻接矩阵来玩玩,邻接矩阵需要采用两个数组,

①. 保存顶点信息的一维数组,

②. 保存边信息的二维数组。

复制代码
 1 public class Graph
 2         {
 3             /// <summary>
 4             /// 顶点个数
 5             /// </summary>
 6             public char[] vertexs;
 7 
 8             /// <summary>
 9             /// 边的条数
10             /// </summary>
11             public int[,] edges;
12 
13             /// <summary>
14             /// 顶点个数
15             /// </summary>
16             public int vertexsNum;
17 
18             /// <summary>
19             /// 边的个数
20             /// </summary>
21             public int edgesNum;
22         }
复制代码

 

 2:矩阵构建

 矩阵构建很简单,这里把上图中的顶点和权的信息保存在矩阵中。

复制代码
 1 #region 矩阵的构建
 2         /// <summary>
 3         /// 矩阵的构建
 4         /// </summary>
 5         public void Build()
 6         {
 7             //顶点数
 8             graph.vertexsNum = 6;
 9 
10             //边数
11             graph.edgesNum = 8;
12 
13             graph.vertexs = new char[graph.vertexsNum];
14 
15             graph.edges = new int[graph.vertexsNum, graph.vertexsNum];
16 
17             //构建二维数组
18             for (int i = 0; i < graph.vertexsNum; i++)
19             {
20                 //顶点
21                 graph.vertexs[i] = (char)(i + 65);
22 
23                 for (int j = 0; j < graph.vertexsNum; j++)
24                 {
25                     graph.edges[i, j] = int.MaxValue;
26                 }
27             }
28 
29             graph.edges[0, 1] = graph.edges[1, 0] = 80;
30             graph.edges[0, 3] = graph.edges[3, 0] = 100;
31             graph.edges[0, 5] = graph.edges[5, 0] = 20;
32             graph.edges[1, 2] = graph.edges[2, 1] = 90;
33             graph.edges[2, 5] = graph.edges[5, 2] = 70;
34             graph.edges[3, 2] = graph.edges[2, 3] = 100;
35             graph.edges[4, 5] = graph.edges[5, 4] = 40;
36             graph.edges[3, 4] = graph.edges[4, 3] = 60;
37             graph.edges[2, 3] = graph.edges[3, 2] = 10;
38         }
39         #endregion
复制代码

 

3:Prim

要玩Prim,我们需要两个字典。

①:保存当前节点的字典,其中包含该节点的起始边和终边以及权值,用weight=-1来记录当前节点已经访问过,用weight=int.MaxValue表示

      两节点没有边。

②:输出节点的字典,存放的就是我们的N集合。

当然这个复杂度玩高了,为O(N2),寻找N集合的邻边最小权值时,我们可以玩玩AVL或者优先队列来降低复杂度。

复制代码
 1 #region prim算法
 2         /// <summary>
 3         /// prim算法
 4         /// </summary>
 5         public Dictionary<char, Edge> Prim()
 6         {
 7             Dictionary<char, Edge> dic = new Dictionary<char, Edge>();
 8 
 9             //统计结果
10             Dictionary<char, Edge> outputDic = new Dictionary<char, Edge>();
11 
12             //weight=MaxValue:标识没有边
13             for (int i = 0; i < graph.vertexsNum; i++)
14             {
15                 //起始边
16                 var startEdge = (char)(i + 65);
17 
18                 dic.Add(startEdge, new Edge() { weight = int.MaxValue });
19             }
20 
21             //取字符的开始位置
22             var index = 65;
23 
24             //取当前要使用的字符
25             var start = (char)(index);
26 
27             for (int i = 0; i < graph.vertexsNum; i++)
28             {
29                 //标记开始边已使用过
30                 dic[start].weight = -1;
31 
32                 for (int j = 1; j < graph.vertexsNum; j++)
33                 {
34                     //获取当前 c 的 邻边
35                     var end = (char)(j + index);
36 
37                     //取当前字符的权重
38                     var weight = graph.edges[(int)(start) - index, j];
39 
40                     if (weight < dic[end].weight)
41                     {
42                         dic[end] = new Edge()
43                         {
44                             weight = weight,
45                             startEdge = start,
46                             endEdge = end
47                         };
48                     }
49                 }
50 
51                 var min = int.MaxValue;
52 
53                 char minkey = ' ';
54 
55                 foreach (var key in dic.Keys)
56                 {
57                     //取当前 最小的 key(使用过的除外)
58                     if (min > dic[key].weight && dic[key].weight != -1)
59                     {
60                         min = dic[key].weight;
61                         minkey = key;
62                     }
63                 }
64 
65                 start = minkey;
66 
67                 //边为顶点减去1
68                 if (outputDic.Count < graph.vertexsNum - 1 && !outputDic.ContainsKey(minkey))
69                 {
70                     outputDic.Add(minkey, new Edge()
71                     {
72                         weight = dic[minkey].weight,
73                         startEdge = dic[minkey].startEdge,
74                         endEdge = dic[minkey].endEdge
75                     });
76                 }
77             }
78             return outputDic;
79         }
80         #endregion
复制代码

 

4:最后我们来测试一下,看看找出的最小生成树。

复制代码
 1     public static void Main()
 2         {
 3             MatrixGraph martix = new MatrixGraph();
 4 
 5             martix.Build();
 6 
 7             var dic = martix.Prim();
 8 
 9             Console.WriteLine("最小生成树为:");
10 
11             foreach (var key in dic.Keys)
12             {
13                 Console.WriteLine("({0},{1})({2})", dic[key].startEdge, dic[key].endEdge, dic[key].weight);
14             }
15 
16             Console.Read();
17         }
复制代码

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值