| 参数详情 | 说明 | 参数量 |
| name = bert/embeddings/word_embeddings:0, shape = (30522, 768) | 单词表每个单词向量长度是768,一共30522个单词 | 23440896 |
| name = bert/embeddings/token_type_embeddings:0, shape = (2, 768) | 对于输入的任务是两个句子的,需要两个768维度的向量表示是第一个句子还是第二个句子 | 1536 |
| name = bert/embeddings/position_embeddings:0, shape = (512, 768) | 每个位置的embedding向量的表示,每一个位置向量是768维 | 393216 |
| name = bert/embeddings/LayerNorm/beta:0, shape = (768,) | LayerNorm beta参数,因为单词向量表示是768维,所以是768个 | 768 |
| name = bert/embeddings/LayerNorm/gamma:0, shape = (768,) | LayerNorm gamma参数,因为单词向量表示是768维,所以是768个 | 768 |
| name = bert/encoder/layer_0/attention/self/query/kernel:0, shape = (768, 768) | 这个是输入矩阵形状对应的query,正常是(768,12*64)所以最后变成了(768, 768) | 589824 |
| name = bert/encoder/layer_0/attention/self/query/bias:0, shape = (768,) | 因为上面后者是12*64=768,所以最后是768维度的向量 | 768 |
| name = bert/encoder/layer_0/attention/self/key/kernel:0, shape = (768, 768) | 这个是输出矩阵形状对应的key,因为是self-attention,所以输出与输入的形状是相同的,所以也是(768, 12*64) | 589824 |
| name = bert/encoder/layer_0/attention/self/key/bias:0, shape = (768,) | 因为上面后者是12*64=768,所以最后是768维度的向量 | 768 |
| name = bert/encoder/layer_0/attention/self/value/kernel:0, shape = (768, 768) | 这个是输出矩阵形状对应的value,因为是self-attention,所以输出与输入的形状是相同的,所以也是(768, 12*64) | 589824 |
| name = bert/encoder/layer_0/attention/self/value/bias:0, shape = (768,) | 因为上面后者是12*64=768,所以最后是768维度的向量 | 589824 |
| name = bert/encoder/layer_0/attention/output/dense/kernel:0, shape = (768, 768) | 全连接第一层 768*768,全连接之后进行的残差连接 | 589824 |
| name = bert/encoder/layer_0/attention/output/dense/bias:0, shape = (768,) | 全连接对应的bias | 768 |
| name = bert/encoder/layer_0/attention/output/LayerNorm/beta:0, shape = (768,) | LayerNorm beta参数,因为单词向量表示是768维,所以是768个 | 768 |
| name = bert/encoder/layer_0/attention/output/LayerNorm/gamma:0, shape = (768,) | LayerNorm gamma参数,因为单词向量表示是768维,所以是768个 | 768 |
| name = bert/encoder/layer_0/intermediate/dense/kernel:0, shape = (768, 3072) | 全连接第二层是768*3072 | 2359296 |
| name = bert/encoder/layer_0/intermediate/dense/bias:0, shape = (3072,) | 全连接对应的bias | 3072 |
| name = bert/encoder/layer_0/output/dense/kernel:0, shape = (3072, 768) | 全连接第三层,将神经元的个数降低到768,好进行下一层的multi-head attention | 2359296 |
| name = bert/encoder/layer_0/output/dense/bias:0, shape = (768,) | 全连接对应的bias | 768 |
| name = bert/encoder/layer_0/output/LayerNorm/beta:0, shape = (768,) | LayerNorm beta参数,因为单词向量表示是768维,所以是768个 | 768 |
| name = bert/encoder/layer_0/output/LayerNorm/gamma:0, shape = (768,) | LayerNorm gamma参数,因为单词向量表示是768维,所以是768个 | 768 |
| name = bert/encoder/layer_1/attention/self/query/kernel:0, shape = (768, 768) | 这个是输入矩阵形状对应的query,正常是(768,12*64)所以最后变成了(768, 768) | 589824 |
| name = bert/encoder/layer_1/attention/self/query/bias:0, shape = (768,) | 因为上面后者是12*64=768,所以最后是768维度的向量 | 768 |
| name = bert/encoder/layer_1/attention/self/key/kernel:0, shape = (768, 768) | 这个是输出矩阵形状对应的key,因为是self-attention,所以输出与输入的形状是相同的,所以也是(768, 12*64) | 589824 |
| name = bert/encoder/layer_1/attention/self/key/bias:0, shape = (768,) | 因为上面后者是12*64=768,所以最后是768维度的向量 | 768 |
| name = bert/encoder/layer_1/attention/self/value/kernel:0, shape = (768, 768) | 这个是输出矩阵形状对应的value,因为是self-attention,所以输出与输入的形状是相同的,所以也是(768, 12*64) | 589824 |
| name = bert/encoder/layer_1/attention/self/value/bias:0, shape = (768,) | 因为上面后者是12*64=768,所以最后是768维度的向量 | 589824 |
| name = bert/encoder/layer_1/attention/output/dense/kernel:0, shape = (768, 768) | 全连接第一层 768*768 | 589824 |
| name = bert/encoder/layer_1/attention/output/dense/bias:0, shape = (768,) | 全连接对应的bias | 768 |
| name = bert/encoder/layer_1/attention/output/LayerNorm/beta:0, shape = (768,) | LayerNorm beta参数,因为单词向量表示是768维,所以是768个 | 768 |
| name = bert/encoder/layer_1/attention/output/LayerNorm/gamma:0, shape = (768,) | LayerNorm gamma参数,因为单词向量表示是768维,所以是768个 | 768 |
| name = bert/encoder/layer_1/intermediate/dense/kernel:0, shape = (768, 3072) | 全连接第二层是768*3072 | 2359296 |
| name = bert/encoder/layer_1/intermediate/dense/bias:0, shape = (3072,) | 全连接对应的bias | 3072 |
| name = bert/encoder/layer_1/output/dense/kernel:0, shape = (3072, 768) | 全连接第三层,将神经元的个数降低到768,好进行下一层的multi-head attention | 2359296 |
| name = bert/encoder/layer_1/output/dense/bias:0, shape = (768,) | 全连接对应的bias | 768 |
| name = bert/encoder/layer_1/output/LayerNorm/beta:0, shape = (768,) | LayerNorm beta参数,因为单词向量表示是768维,所以是768个 | 768 |
| name = bert/encoder/layer_1/output/LayerNorm/gamma:0, shape = (768,) | LayerNorm gamma参数,因为单词向量表示是768维,所以是768个 | 768 |
| name = bert/encoder/layer_2/attention/self/query/kernel:0, shape = (768, 768) | 这个是输入矩阵形状对应的query,正常是(768,12*64)所以最后变成了(768, 768) | 589824 |
| name = bert/encoder/layer_2/attention/self/query/bias:0, shape = (768,) | 因为上面后者是12*64=768,所以最后是768维度的向量 | 768 |
| name = bert/encoder/layer_2/attention/self/key/kernel:0, shape = (768, 768) |
BERT参数量计算
最新推荐文章于 2025-06-22 14:40:26 发布

最低0.47元/天 解锁文章
2832

被折叠的 条评论
为什么被折叠?



