SMOKE Vs SANITY

本文探讨了软件测试中烟雾测试与理智测试的区别。烟雾测试主要用于验证新构建的基本功能是否正常工作,而理智测试则是在较小改动后进行的一种轻量级回归测试,旨在确认修复的问题没有引入新的错误。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

I have gathered a few points about the difference between smoke and sanity testing from the responses of two software testing groups. I have added the points below.

 

However, my experience of executing the Smoke and Sanity testing has been the following:

 

Smoke Test:

When a build is received, a smoke test is run to ascertain if the build is stable and it can be considered for further testing.

 

Smoke testing can be done for testing the stability of any interim build.

 

Smoke testing can be executed for platform qualification tests.

 

Sanity testing:

Once a new build is obtained with minor revisions, instead of doing a through regression, a sanity is performed so as to ascertain the build has indeed rectified the issues and no further issue has been introduced by the fixes.   Its generally a subset of regression testing and a group of test cases are executed that are related with the changes made to the app.

 

Generally, when multiple cycles of testing are executed, sanity testing may be done during the later cycles after through regression cycles.

 

 

 

Smoke

Sanity


1

Smoke testing originated in the hardware testing practice of turning on a new piece of hardware for the first time and considering it a success if it does not catch fire and smoke.   In software industry, smoke testing is a shallow and wide approach whereby all areas of the application without getting into too deep, is tested.

A sanity test is a narrow regression test that focuses on one or a few areas of functionality. Sanity testing is usually narrow and deep.

2

A smoke test is scripted--either using a written set of tests or an automated test

A sanity test is usually unscripted.

3

A Smoke test is designed to touch every part of the application in a cursory way. It's is shallow and wide.

A Sanity test is used to determine a small section of the application is still working after a minor change.

4

Smoke testing will be conducted to ensure whether the most crucial functions of a program work, but not bothering with finer details. (Such as build verification).

Sanity testing is a cursory testing; it is performed whenever a cursory testing is sufficient to prove the application is functioning according to specifications. This level of testing is a subset of regression testing.

5

Smoke testing is normal health check up to a build of an application before taking it to testing in depth.

 

sanity testing is to verify whether requirements are met or not,

checking all features breadth-first.

 

 

 

-Devankur

资源下载链接为: https://pan.quark.cn/s/67c535f75d4c 在机器人技术中,轨迹规划是实现机器人从一个位置平稳高效移动到另一个位置的核心环节。本资源提供了一套基于 MATLAB 的机器人轨迹规划程序,涵盖了关节空间和笛卡尔空间两种规划方式。MATLAB 是一种强大的数值计算与可视化工具,凭借其灵活易用的特点,常被用于机器人控制算法的开发与仿真。 关节空间轨迹规划主要关注机器人各关节角度的变化,生成从初始配置到目标配置的连续路径。其关键知识点包括: 关节变量:指机器人各关节的旋转角度或伸缩长度。 运动学逆解:通过数学方法从末端执行器的目标位置反推关节变量。 路径平滑:确保关节变量轨迹连续且无抖动,常用方法有 S 型曲线拟合、多项式插值等。 速度和加速度限制:考虑关节的实际物理限制,确保轨迹在允许的动态范围内。 碰撞避免:在规划过程中避免关节与其他物体发生碰撞。 笛卡尔空间轨迹规划直接处理机器人末端执行器在工作空间中的位置和姿态变化,涉及以下内容: 工作空间:机器人可到达的所有三维空间点的集合。 路径规划:在工作空间中找到一条从起点到终点的无碰撞路径。 障碍物表示:采用二维或三维网格、Voronoi 图、Octree 等数据结构表示工作空间中的障碍物。 轨迹生成:通过样条曲线、直线插值等方法生成平滑路径。 实时更新:在规划过程中实时检测并避开新出现的障碍物。 在 MATLAB 中实现上述规划方法,可以借助其内置函数和工具箱: 优化工具箱:用于解决运动学逆解和路径规划中的优化问题。 Simulink:可视化建模环境,适合构建和仿真复杂的控制系统。 ODE 求解器:如 ode45,用于求解机器人动力学方程和轨迹执行过程中的运动学问题。 在实际应用中,通常会结合关节空间和笛卡尔空间的规划方法。先在关节空间生成平滑轨迹,再通过运动学正解将关节轨迹转换为笛卡
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值