微积分-求导
一丶求导基本公式
-
(c)′=0(c)'=0(c)′=0
(x)′=12x−12=12x(\sqrt{x})'=\frac{1}{2} \sqrt{x}^{-\frac{1}{2}}=\frac{1}{2 \sqrt{x}}(x)′=21x−21=2x1
(1x)′=−1x2(\frac{1}{x})'=-\frac{1}{x^2}(x1)′=−x21 -
(xa)′=axa−1(x^a)'=ax^{a-1}(xa)′=axa−1
-
(ex)′=ex(e^x)'=e^x(ex)′=ex
-
(ax)′=axlna(a^x)'=a^x \ln a(ax)′=axlna
-
(lnx)′=1x(\ln x)'=\frac{1}{x}(lnx)′=x1
-
(logax)′=1xlna(log_a x)'=\frac{1}{x \ln a}(logax)′=xlna1
-
(sinx)′=cosx(\sin x)'=\cos x(sinx)′=cosx
-
(cosx)′=−sinx(\cos x)'=-\sin x(cosx)′=−sinx
二丶求导四则运算
2.1 加减
(u±v)′=u′±v′(u±v)'=u'±v'(u±v)′=u′±v′
2.2 常数乘导数
(ku)′=ku′(ku)'=ku'(ku)′=ku′
2.3 乘法
(uv)′=u′v+uv′(uv)'=u'v+uv'(uv)′=u′v+uv′
2.4 除法
(uv)′=u′v−uv′v2(\frac{u}{v})'=\frac{{u'v-uv'}}{v^2}(vu)′=v2u′v−uv′
三丶求导复合运算
f(x)=u(x)dydx=dydududx f(x)=u(x) \\ \frac{dy}{dx}=\frac{dy}{du} \frac{du}{dx} f(x)=u(x)dxdy=dudydxdu
例题: y=sin2xy = \sin 2xy=sin2x
答: 设 u=sinvu = \sin vu=sinv,v=2xv = 2xv=2x
y′=u′v′=cosv∗2=2cos2x
y' = u' v'
\\
=\cos v * 2
\\
= 2 \cos 2x
y′=u′v′=cosv∗2=2cos2x
四丶特殊函数求导 [暂定]
形如: y=u(x)v(x)y = u(x)^{v(x)}y=u(x)v(x)
公式:
y′=y(v(x)[lnu(x)]′)
y' = y(v(x)[\ln u(x)]')
y′=y(v(x)[lnu(x)]′)
步骤:
- 增加 ln\lnln
lny=lnu(x)v(x)\ln y = \ln u(x)^{v(x)}lny=lnu(x)v(x)
lny=v(x)lnu\ln y = v(x) \ln ulny=v(x)lnu - 求导
1yy′=v(x)′lnu+v(x)(lnu)′\frac{1}{y} y' = v(x)' \ln u + v(x) (ln u)'y1y′=v(x)′lnu+v(x)(lnu)′
y′=u(x)v(x)[v(x)′lnu+v(x)(lnu)′]y' = u(x)^{v(x)} [v(x)' \ln u + v(x) (\ln u)']y′=u(x)v(x)[v(x)′lnu+v(x)(lnu)′]
对数微分法:
对数微分法是求解形如 (y=u(x)v(x))(y = u(x)^{v(x)})(y=u(x)v(x))这类函数导数的一种非常有用的技巧。这种方法利用了对数的性质来简化求导过程。下面是使用对数微分法求解该函数导数的步骤:
-
对两边取自然对数:
[ln(y)=ln(u(x)v(x))][ \ln(y) = \ln(u(x)^{v(x)}) ][ln(y)=ln(u(x)v(x))] -
利用对数的幂规则(即 (ln(ab)=bln(a))(\ln(a^b) = b \ln(a))(ln(ab)=bln(a))):
[ln(y)=v(x)ln(u(x))][ \ln(y) = v(x) \ln(u(x)) ][ln(y)=v(x)ln(u(x))] -
对等式两边关于 ( x ) 求导:
[ddx(ln(y))=ddx(v(x)ln(u(x)))][ \frac{d}{dx}(\ln(y)) = \frac{d}{dx}(v(x) \ln(u(x))) ][dxd(ln(y))=dxd(v(x)ln(u(x)))] -
使用乘积法则(即 (ddx(fg)=f′g+fg′)(\frac{d}{dx}(fg) = f'g + fg')(dxd(fg)=f′g+fg′)):
[1ydydx=v′(x)ln(u(x))+v(x)1u(x)u′(x)][ \frac{1}{y} \frac{dy}{dx} = v'(x) \ln(u(x)) + v(x) \frac{1}{u(x)} u'(x) ][y1dxdy=v′(x)ln(u(x))+v(x)u(x)1u′(x)] -
解出 (dydx)( \frac{dy}{dx} )(dxdy):
[dydx=y(v′(x)ln(u(x))+v(x)u′(x)u(x))][ \frac{dy}{dx} = y \left( v'(x) \ln(u(x)) + v(x) \frac{u'(x)}{u(x)} \right) ][dxdy=y(v′(x)ln(u(x))+v(x)u(x)u′(x))] -
将 ( y ) 代回:
[dydx=u(x)v(x)(v′(x)ln(u(x))+v(x)u′(x)u(x))][ \frac{dy}{dx} = u(x)^{v(x)} \left( v'(x) \ln(u(x)) + v(x) \frac{u'(x)}{u(x)} \right) ][dxdy=u(x)v(x)(v′(x)ln(u(x))+v(x)u(x)u′(x))]
这样,我们就得到了 (y=u(x)v(x))( y = u(x)^{v(x)} )(y=u(x)v(x)) 的导数,这种方法避免了直接使用链式法则,而是通过取对数和使用对数的幂规则来简化求导过程。这种方法在处理复杂的幂函数时尤其有用。