2025年世界职业院校技能大赛赛道简介

序号赛道名称对接行业组别
面向主要岗位(群)或技术领域
对应专业
1
现代农业赛道
农业大类:
农作物种植,草种植及割草,其
他农业等;
2.农、林、牧、渔专业及辅助性
活动大类:
农业专业及辅助性活动等;
3.农副食品加工业大类:
谷物磨制,饲料加工,蔬菜、菌
类、水果和坚果加工,其他农副
食品加工等;
4.专用设备制造业大类:
食品、饮料、烟草及饲料生产专
用设备制造,农、林、牧、渔专
用机械制造等;
5.仪器仪表制造业大类:
农林牧渔专用仪器仪表制造等;
6.化学原料和化学制品制造业
大类:
肥料制造,化学农药制造等;
7.批发业大类:
农作物批发,种子批发,畜牧渔
业饲料批发等;
8.科技推广和应用服务业大类:
农林牧渔技术推广服务
中职组
1.农业生产类
种子生产,园艺作物生产,作物种子种苗生产,农牧生产,
农业清洁生产,沼气生产,有机肥生产,中草药栽培繁育,
烟草种植,饲草栽培,烟叶调制,农业技术,作物生产技术
服务等;
2.农产品加工与质量控制类
农产品加工,种子加工,饲草产品加工,农产品检验,农产
品质量检测,饲草种子检验,农产品品质控制,测土配方施
肥,病虫害绿色防治,农业废弃物无害化处理,烟叶评级等;
3.农业机械与设备类
农机设备应用,农机驾驶,农业机械装备维修,农业机械操
作,农业机械设备安装与调试等;
4.农业经营与管理类
农资或农产品营销,园艺产品营销,种子营销,饲草产品营
销,农资连锁门店经营,中草药销售,农资电子商务,农场
创建,生产管理,农资管理,农产品仓储管理,财务核算,
农业机械装备营销与售后服务,农业废弃物资源化利用等;
5.休闲农业与旅游类
休闲农业生产,休闲农业园区接待与服务,休闲旅游活动组 织等
对应农业类专业
高职组
1.农业生产技术类
农业生产,作物生产,作物种子生产,设施果树生产,蔬菜
生产,花卉生产,设施园艺种子种苗繁育,中草药良种繁育,
园艺作物种苗繁育,菌种制作,茶叶生产技术,茶叶生产技
术服务,饲草生产技术服务,园艺作物生产及技术指导,病
虫害防治,设施园艺技术推广,园艺技术推广,农业技术推
广等;
2.农产品加工与质量控制类
棉花加工,中草药采收与产地初加工,生产加工,饲草料加
工,饲草产品质量安全检测,中草药质量检测,作物病虫草
害绿色防控,植物及农产品检验检疫,棉花检验,饲草包装
贮藏,农产品质量检测,绿色食品认证等;
3.农业机械与设备类
植保无人机操控,园艺设施使用与管护,农机装备驾驶及操
作,农机装备修理与保养,农机作业服务,农机推广与应用
和农机安全与监理等;
4.农业经营与管理类
中草药销售,中药材销售,茶产品营销,棉花营销,农药推
广与营销,农机装备营销,农产品及农资营销策划,农产品
及农资营销,农业经营,家庭农场生产经营,茶叶生产管理,
栽培管理,农业企业经营与管理,园艺企业经营与管理,农
民专业合作社经营与管理,农业商务数据分析与应用,农产
品网店(实体店)运营,农业服务等;
5.休闲农业与旅游类
休闲农业园区管理,休闲农业服务与接待,休闲农业产品开
发与营销,休闲农业生产组织等;
6.绿色与智慧农业类
绿色食品生产与技术服务,智慧农业生产,智慧农业管理,
农业智能应用,智慧农产品安全等
对应农业类专业

单向双向V2G 环境下分布式电源与电动汽车充电站联合配置方法(Matlab代码实现)内容概要:本文介绍了在单向和双向V2G(Vehicle-to-Grid)环境下,分布式电源与电动汽车充电站的联合配置方法,并提供了基于Matlab的代码实现。研究涵盖电力系统优化、可再生能源接入、电动汽车充放电调度、储能配置及微电网经济调度等多个关键技术领域,重点探讨了在不同电价机制和需求响应策略下,如何通过智能优化算法实现充电站与分布式电源的协同规划与运行优化。文中还展示了多种应用场景,如有序充电调度、鲁棒优化模型、多目标优化算法(如NSGA-II、粒子群算法)在电力系统中的实际应用,体现了较强的工程实践价值和技术综合性。; 适合人群:具备电力系统、新能源、智能优化算法等相关背景的科研人员、研究生及从事能源系统规划与优化的工程技术人员;熟悉Matlab/Simulink仿真工具者更佳。; 使用场景及目标:①用于科研项目中关于电动汽车与分布式电源协同配置的模型构建与仿真验证;②支持毕业论文、期刊投稿中的案例分析与算法对比;③指导实际电力系统中充电站布局与能源调度的优化设计。; 阅读建议:建议结合文中提供的Matlab代码与具体案例进行同步实践,重点关注优化模型的数学建模过程与算法实现细节,同时可参考文末网盘资源获取完整代码与数据集以提升学习效率。
【电动车】【超级棒】基于蒙特卡洛模拟法的电动汽车充电负荷研究(Matlab代码实现)内容概要:本文围绕基于蒙特卡洛模拟法的电动汽车充电负荷研究展开,利用Matlab代码实现对不同类型电动汽车(如常规充电、快速充电、换电模式)在不同场景下的充电负荷进行建模与仿真。通过蒙特卡洛方法模拟大量电动汽车的充电行为,结合用户出行规律、充电时间、电量需求等随机因素,分析电动汽车规模化接入电网后对电力系统负荷的影响,并探讨分时电价策略对充电负荷的引导作用,进而优化电网运行。研究涵盖充电负荷的空间分布特性、时间分布特征及对电网峰谷差的影响,旨在为电力系统规划和电动汽车有序充电管理提供理论支持和技术工具。; 适合人群:具备一定电力系统、交通工程或新能源汽车背景的研究生、科研人员及从事智能电网、电动汽车相关领域的工程技术人员。; 使用场景及目标:①用于研究大规模电动汽车接入对配电网负荷曲线的影响;②支撑分时电价、需求响应等政策制定与优化;③为充电站规划、电网调度、储能配置等提供数据支持和仿真平台;④适用于学术研究、课题复现及工程项目前期分析。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注蒙特卡洛模拟的参数设置、充电行为的概率建模过程,并尝试调整输入变量以观察负荷变化趋势,加深对电动汽车充电负荷不确定性和聚合效应的理解。
先展示下效果 https://pan.quark.cn/s/43dfb91c1388 在Android开发领域中,`SurfaceView`被视为一种关键性的视图组件,它特别适用于处理需要高性能且低延迟的图形操作,例如游戏运行和视频播放等。 本篇内容将详细研究如何运用`SurfaceView`来制作动画效果,并涵盖相关的技术要点。 我们必须明确`SurfaceView`的基本属性。 与常规的`View`不同,`SurfaceView`拥有专属的绘图表面,该表面独立于应用程序窗口的堆叠结构,而是在窗口管理器中直接创建一个独立的层级。 这种构造方式使得`SurfaceView`能够提供更迅捷的渲染速度,因为它不受窗口重绘过程的影响。 这对于需要持续更新的动画来说具有显著的优势。 构建`SurfaceView`动画的核心在于`SurfaceHolder`接口,该接口作为`SurfaceView`的持有者,提供了对底层`Surface`的访问权限以及回调机制。 开发者可以通过监听`SurfaceCreated`、`SurfaceChanged`和`SurfaceDestroyed这三个事件来管理和控制动画的生命周期。 1. **SurfaceCreated**:当`Surface`准备妥当时触发,这是开始进行绘制的理想时机。 在此阶段初始化动画逻辑,例如设定帧率、载入图像资源等。 2. **SurfaceChanged**:当`Surface`的尺寸或格式发生变动时触发,比如设备屏幕发生旋转。 你需要在此处调整动画的尺寸以适应新的屏幕布局。 3. **SurfaceDestroyed**:当`Surface`变得不可用时触发,可能是`SurfaceView`被移除或系统资源得到回收。 此时,应该...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值