单例Singleton设计模式

本文介绍了单例模式的设计理念,通过将构造方法私有化并提供静态方法获取唯一实例,确保了整个应用程序中类的实例唯一性。代码示例展示了如何实现这一模式。

1. 单例模式

所谓类的单例设计模式,就是采取一定的方法保证在整个的软件系统中,对某个类只能存在一个对象实例,并且该类只提供一个取得其对象实例的方法。如果我们要让类在一个虚拟机中只能产生一个对象,我们首先必须将类的构造方法的访问权限设置为private,这样,就不能用new操作符在类的外部产生类的对象了,但在类内部仍可以产生该类的对象。因为在类的外部开始还无法得到类的对象,只能调用该类的某个静态方法以返回类内部创建的对象,静态方法只能访问类中的静态成员变量,所以,指向类内部产生的该类对象的变量也必须定义成静态的。

2. 代码

Single类:

package com.atguigu.javase.lesson5;

public class Single {
    //1.在类的外部不能通过new构造器的方式创建实例,把构造器隐藏起来,即构造器私有化。
    private Single(){}

    //2.因为在类的外部不能创建类的实例,只能在类的内部创建。
    //3.为了让类的外部可以直接使用该实例,使用static修饰。
    //4.不能再类的外部可以修改该属性:私有化该属性,同时提供公有的get方法来访问
    private static Single instance = new Single();
    public static Single getInstance() {
        return instance;
    }
}

TestSingle类:

package com.atguigu.javase.lesson5;

public class TestSingle {
    public static void main(String[] args){
        Single single1 = Single.getInstance();
        Single single2 = Single.getInstance();
        System.out.println(single1 == single2);
    }
}

执行结果:
这里写图片描述

同步定位与地图构建(SLAM)技术为移动机器人或自主载具在未知空间中的导航提供了核心支撑。借助该技术,机器人能够在探索过程中实时构建环境地图并确定自身位置。典型的SLAM流程涵盖传感器数据采集、数据处理、状态估计及地图生成等环节,其核心挑战在于有效处理定位与环境建模中的各类不确定性。 Matlab作为工程计算与数据可视化领域广泛应用的数学软件,具备丰富的内置函数与专用工具箱,尤其适用于算法开发与仿真验证。在SLAM研究方面,Matlab可用于模拟传感器输出、实现定位建图算法,并进行系统性能评估。其仿真环境能显著降低实验成本,加速算法开发与验证周期。 本次“SLAM-基于Matlab的同步定位与建图仿真实践项目”通过Matlab平台完整再现了SLAM的关键流程,包括数据采集、滤波估计、特征提取、数据关联与地图更新等核心模块。该项目不仅呈现了SLAM技术的实际应用场景,更为机器人导航与自主移动领域的研究人员提供了系统的实践参考。 项目涉及的核心技术要点主要包括:传感器模型(如激光雷达与视觉传感器)的建立与应用、特征匹配与数据关联方法、滤波器设计(如扩展卡尔曼滤波与粒子滤波)、图优化框架(如GTSAM与Ceres Solver)以及路径规划与避障策略。通过项目实践,参与者可深入掌握SLAM算法的实现原理,并提升相关算法的设计与调试能力。 该项目同时注重理论向工程实践的转化,为机器人技术领域的学习者提供了宝贵的实操经验。Matlab仿真环境将复杂的技术问题可视化与可操作化,显著降低了学习门槛,提升了学习效率与质量。 实践过程中,学习者将直面SLAM技术在实际应用中遇到的典型问题,包括传感器误差补偿、动态环境下的建图定位挑战以及计算资源优化等。这些问题的解决对推动SLAM技术的产业化应用具有重要价值。 SLAM技术在工业自动化、服务机器人、自动驾驶及无人机等领域的应用前景广阔。掌握该项技术不仅有助于提升个人专业能力,也为相关行业的技术发展提供了重要支撑。随着技术进步与应用场景的持续拓展,SLAM技术的重要性将日益凸显。 本实践项目作为综合性学习资源,为机器人技术领域的专业人员提供了深入研习SLAM技术的实践平台。通过Matlab这一高效工具,参与者能够直观理解SLAM的实现过程,掌握关键算法,并将理论知识系统应用于实际工程问题的解决之中。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值