语音特征参数MFCC

一、MFCC概述


               在语音识别(Speech Recognition)和话者识别(Speaker Recognition)方面,最常用到的语音特征就是梅尔倒谱系数(Mel-scale Frequency Cepstral Coefficients,简称MFCC)。根据人耳听觉机理的研究发现,人耳对不同频率的声波有不同的听觉敏感度。从200Hz到5000Hz的语音信号对语音的清晰度影响对大。两个响度不等的声音作用于人耳时,则响度较高的频率成分的存在会影响到对响度较低的频率成分的感受,使其变得不易察觉,这种现象称为掩蔽效应。由于频率较低的声音在内耳蜗基底膜上行波传递的距离大于频率较高的声音,故一般来说,低音容易掩蔽高音,而高音掩蔽低音较困难。在低频处的声音掩蔽的临界带宽较高频要小。所以,人们从低频到高频这一段频带内按临界带宽的大小由密到疏安排一组带通滤波器,对输入信号进行滤波。将每个带通滤波器输出的信号能量作为信号的基本特征,对此特征经过进一步处理后就可以作为语音的输入特征。由于这种特征不依赖于信号的性质,对输入信号不做任何的假设和限制,又利用了听觉模型的研究成果。因此,这种参数比基于声道模型的LPCC相比具有更好的鲁邦性,更符合人耳的听觉特性,而且当信噪比降低时仍然具有较好的识别性能。

梅尔倒谱系数(Mel-scale Frequency Cepstral Coefficients,简称MFCC)是在Mel标度频率域提取出来的倒谱参数,Mel标度描述了人耳频率的非线性特性,它与频率的关系可用下式近似表示:

式中f为频率,单位为Hz。下图展示了Mel频率与线性频率的关系:


图1 Mel频率与线性频率的关系




二、语音特征参数MFCC提取过程

      基本步骤:



图2 MFCC参数提取基本流程

1.预加重

预加重处理其实是将语音信号通过一个高通滤波器:

(2)

式中μ的值介于0.9-1.0之间,我们通常取0.97。预加重的目的是提升高频部分,使信号的频谱变得平坦,保持在低频到高频的整个频带中,能用同样的信噪比求频谱。同时,也是为了消除发生过程中声带和嘴唇的效应,来补偿语音信号受到发音系统所抑制的高频部分,也为了突出高频的共振峰。

2.分帧

先将N个采样点集合成一个观测单位,称为帧。通常情况下N的值为256或512,涵盖的时间约为20~30ms左右。为了避免相邻两帧的变化过大,因此会让两相邻帧之间有一段重叠区域,此重叠区域包含了M个取样点,通常M的值约为N的1/2或1/3。通常语音识别所采用语音信号的采样频率为8KHz或16KHz,以8KHz来说,若帧长度为256个采样点,则对应的时间长度是256/8000×1000=32ms。

3.加窗(Hamming Window)

将每一帧乘以汉明窗,以增加帧左端和右端的连续性。假设分帧后的信号为S(n), n=0,1…,N-1, N为帧的大小,那么乘上汉明窗后,W(n)形式如下:

(3)

不同的a值会产生不同的汉明窗,一般情况下a取0.46

4.快速傅里叶变换

由于信号在时域上的变换通常很难看出信号的特性,所以通常将它转换为频域上的能量分布来观察,不同的能量分布,就能代表不同语音的特性。所以在乘上汉明窗后,每帧还必须再经过快速傅里叶变换以得到在频谱上的能量分布。对分帧加窗后的各帧信号进行快速傅里叶变换得到各帧的频谱。并对语音信号的频谱取模平方得到语音信号的功率谱。设语音信号的DFT为:


(4)

           式中x(n)为输入的语音信号,N表示傅里叶变换的点数。

           5. 三角带通滤波器

           将能量谱通过一组Mel尺度的三角形滤波器组,定义一个有M个滤波器的滤波器组(滤波器的个数和临界            带的个数相近),采用的滤波器为三角滤波器,中心频率为f(m),m=1,2,...,M。M通常取22-26。各                f(m)之间的间隔随着m值的减小而缩小,随着m值的增大而增宽,如图所示:



图3 Mel频率滤波器组

           

三角滤波器的频率响应定义为:

(5)


              式中


三角带通滤波器有两个主要目的:

对频谱进行平滑化,并消除谐波的作用,突显原先语音的共振峰。(因此一段语音的音调或音高,是不会呈现在 MFCC 参数内,换句话说,以 MFCC 为特征的语音辨识系统,并不会受到输入语音的音调不同而有所影响) 此外,还可以降低运算量。

6.计算每个滤波器组输出的对数能量为:

(6)

7.经离散余弦变换(DCT)得到MFCC系数:


(7)

                

将上述的对数能量带入离散余弦变换,求出L阶的Mel-scale Cepstrum参数。L阶指MFCC系数阶数,通常取12-16。这里M是三角滤波器个数。

8.对数能量

此外,一帧的音量(即能量),也是语音的重要特征,而且非常容易计算。因此,通常再加上一帧的对数能量(定义:一帧内信号的平方和,再取以10为底的对数值,再乘以10)使得每一帧基本的语音特征就多了一维,包括一个对数能量和剩下的倒频谱参数。

注:若要加入其它语音特征以测试识别率,也可以在此阶段加入,这些常用的其它语音特征包含音高、过零率以及共振峰等。

9.动态差分参数的提取(包括一阶差分和二阶差分)

标准的倒谱参数MFCC只反映了语音参数的静态特性,语音的动态特性可以用这些静态特征的差分谱来描述。实验证明:把动、静态特征结合起来才能有效提高系统的识别性能。差分参数的计算可以采用下面的公式:

(8)

式中,dt表示第t个一阶差分,Ct表示第t个倒谱系数,Q表示倒谱系数的阶数,K表示一阶导数的时间差,可取1或2。将上式的结果再代入就可以得到二阶差分的参数。

总结:

因此,MFCC的全部组成其实是由:

N维MFCC参数(N/3 MFCC系数+ N/3 一阶差分参数+ N/3 二阶差分参数)+帧能量(此项可根据需求替换)


https://my.oschina.net/jamesju/blog/193343


内容概要:本文从关键概念、核心技巧、应用场景、代码案例分析及未来发展趋势五个维度探讨了Python编程语言的进阶之路。关键概念涵盖装饰器、生成器、上下文管理器、元类和异步编程,这些概念有助于开发者突破基础认知的核心壁垒。核心技巧方面,介绍了内存优化、性能加速、代码复用和异步处理的方法,例如使用生成器处理大数据流、numba库加速计算密集型任务等。应用场景展示了Python在大数据处理、Web开发、人工智能和自动化运维等多个领域的广泛运用,特别是在FastAPI框架中构建异步API服务的实战案例,详细分析了装饰器日志记录、异步数据库查询和性能优化技巧。最后展望了Python的未来发展趋势,包括异步编程的普及、类型提示的强化、AI框架的深度整合以及多语言协同。 适合人群:已经掌握Python基础语法,希望进一步提升编程技能的开发者,特别是有意向从事数据科学、Web开发或AI相关工作的技术人员。 使用场景及目标:①掌握Python进阶概念和技术,如装饰器、生成器、异步编程等,提升代码质量和效率;②学习如何在实际项目中应用这些技术,如通过FastAPI构建高效的异步API服务;③了解Python在未来编程领域的潜在发展方向,为职业规划提供参考。 阅读建议:本文不仅提供了理论知识,还包含了丰富的实战案例,建议读者在学习过程中结合实际项目进行练习,特别是尝试构建自己的异步API服务,并通过调试代码加深理解。同时关注Python社区的发展动态,及时掌握最新的技术和工具。
内容概要:本文档《Rust系统编程实战》详细介绍了Rust在系统编程领域的应用,强调了其内存安全、零成本抽象和高性能的特点。文档分为三个主要部分:核心实战方向、典型项目案例和技术关键点。在核心实战方向中,重点讲解了unsafe编程、FFI(外部函数接口)和底层API调用,涉及操作系统组件开发、网络编程、设备驱动开发、系统工具开发和嵌入式开发等多个领域,并列出了每个方向所需的技术栈和前置知识。典型项目案例部分以Linux字符设备驱动为例,详细描述了从环境搭建到核心代码实现的具体步骤,包括使用bindgen生成Linux内核API的Rust绑定,定义设备结构体,以及实现驱动核心函数。 适合人群:对系统编程有兴趣并有一定编程基础的开发者,尤其是那些希望深入了解操作系统底层机制、网络协议栈或嵌入式系统的工程师。 使用场景及目标:①掌握Rust在不同系统编程场景下的应用,如操作系统组件开发、网络编程、设备驱动开发等;②通过实际项目(如Linux字符设备驱动)的学习,理解Rust操作系统内核的交互逻辑;③提高对unsafe编程、FFI和底层API调用的理解和运用能力。 阅读建议:由于文档内容较为深入且涉及多个复杂概念,建议读者在学习过程中结合实际操作进行练习,特别是在尝试实现Linux字符设备驱动时,务必按照文档提供的步骤逐步进行,并多加调试和测试。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值