完全背包

完全背包的物品是可以添加多次的,所以要从小到大去遍历
// 先遍历物品,再遍历背包
for(int i = 0; i < weight.size(); i++) { // 遍历物品
for(int j = weight[i]; j <= bagWeight ; j++) { // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
518. 零钱兑换 II

dp[j] += dp[j - coins[i]];
class Solution {
public:
int change(int amount, vector<int>& coins) {
vector<int> dp(amount + 1, 0);
dp[0] = 1;
for (int i = 0; i < coins.size(); i++) { // 遍历物品
for (int j = coins[i]; j <= amount; j++) { // 遍历背包
dp[j] += dp[j - coins[i]];
}
}
return dp[amount];
}
};
377. 组合总和 Ⅳ

class Solution {
public:
int combinationSum4(vector<int>& nums, int target) {
vector<int> dp(target + 1, 0);
dp[0] = 1;
for (int i = 0; i <= target; i++) { // 遍历背包
for (int j = 0; j < nums.size(); j++) { // 遍历物品
if (i - nums[j] >= 0 && dp[i] < INT_MAX - dp[i - nums[j]]) {
dp[i] += dp[i - nums[j]];
}
}
}
return dp[target];
}
};
文章介绍了使用动态规划解决的三个问题:完全背包问题中的物品可以多次选择,零钱兑换问题中找到最少硬币组合,以及组合总和问题IV的目标和。每个问题都涉及到遍历和更新dp数组以求解最优解。
206

被折叠的 条评论
为什么被折叠?



