Scikit-Learn

本文通过使用Scikit-Learn库中的多种机器学习算法(如高斯朴素贝叶斯、支持向量机和服务森林分类器),对鸢尾花数据集进行分类任务。文章详细展示了数据集的划分、模型训练及预测过程,并对模型的准确性、F1分数和AUC-ROC等性能指标进行了评估。

Scikit-Learn Assignment

这里写图片描述
这里写图片描述

Assignment

from sklearn import datasets
from sklearn import cross_validation
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn import metrics

def DataAnalysis():
    """Followed by steps"""

    iris = datasets.load_iris()

    # Create a classification dataset (n_samples >= 1000, n_features >= 10)
    dataset = datasets.make_classification(n_samples = 1000, n_features = 10,
        n_informative = 2, n_redundant = 2, n_repeated = 0, n_classes = 2)

    print ("dataset information")
    # dataset description
    print (iris.DESCR)
    # data examples (features)
    print (iris.data)
    # data target labels (classes)
    print (iris.target)

    # Split the dataset using 10-fold cross validation
    kf = cross_validation.KFold(len(iris.data), n_folds = 10, shuffle = True)
    for train_index, test_index in kf:
        X_train, y_train = iris.data[train_index], iris.target[train_index]
        X_test, y_test = iris.data[test_index], iris.target[test_index]

    print ("\nsplit the dataset")
    print (X_train)
    print (y_train)
    print (X_test)
    print (y_test)

    # GaussianNB
    clf = GaussianNB()
    clf.fit(X_train, y_train)
    pred = clf.predict(X_test)
    print ("\nGaussianNB")
    print (pred)
    print (y_test)

    # SVC
    clf = SVC(C = 1e-02, kernel = 'rbf', gamma = 0.1)
    clf.fit(X_train, y_train)
    pred = clf.predict(X_test)
    print ("\nSVC")
    print (pred)
    print (y_test)

    # RandomForestClassifier
    clf = RandomForestClassifier(n_estimators = 100)
    clf.fit(X_train, y_train)
    pred = clf.predict(X_test)
    print ("\nRandomForestClassifier")
    print (pred)
    print (y_test)

    # Performance evaluation
    acc = metrics.accuracy_score(y_test, pred)
    print ("\nAccuracy")
    print (acc)
    f1 = metrics.f1_score(y_test, pred, average = "weighted")
    print ("\nF1-score")
    print (f1)
    auc = metrics.roc_auc_score(y_test, pred)
    print ("\nAUC ROC")
    print (auc)

DataAnalysis()

Result of the Assignment
Attention: only part of the results are displayed

dataset information

这里写图片描述
这里写图片描述

split the dataset

这里写图片描述

Algorithm and Evaluation

这里写图片描述

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值