# 基本数据对象及操作
## 1. Series
* 创建Series
import pandas as pd
countries = ['中国', '美国', '澳大利亚']
countries_s = pd.Series(countries)
print(type(countries_s))
print(countries_s)
numbers = [4, 5, 6]
print(pd.Series(numbers))
0 4
1 5
2 6
dtype: int64
country_dicts = {'CH': '中国',
'US': '美国',
'AU': '澳大利亚'}
country_dict_s = pd.Series(country_dicts)
# 给索引命名
country_dict_s.index.name = 'Code'
# 给数据命名
country_dict_s.name = 'Country'
print(country_dict_s)
print(country_dict_s.values)
print(country_dict_s.index)
Code
AU 澳大利亚
CH 中国
US 美国
Name: Country, dtype: object
[‘澳大利亚’ ‘中国’ ‘美国’]
Index([‘AU’, ‘CH’, ‘US’], dtype=’object’, name=’Code’)
* 处理缺失数据
countries = ['中国', '美国', '澳大利亚', None]
print(pd.Series(countries))
0 中国
1 美国
2 澳大利亚
3 None
dtype: object
numbers = [4, 5, 6, None]
print(pd.Series(numbers))
0 4.0
1 5.0
2 6.0
3 NaN
dtype: float64
* Series 索引
country_dicts = {'CH': '中国',
'US': '美国',
'AU': '澳大利亚'}
country_dict_s = pd.Series(country_dicts)
print(country_dict_s)
AU 澳大利亚
CH 中国
US 美国
dtype: object
# 通过索引判断数据是存在
# Series也可看作定长、有序的字典
print('CH' in country_dict_s)
print('NZ' in country_dict_s)
True
False
print('iloc:', country_dict_s.iloc[1])
print('loc:', country_dict_s.loc['US'])
print('[]:', country_dict_s['US'])
iloc: 中国
loc: 美国
[]: 美国
print('iloc:\n', country_dict_s.iloc[ [0, 2] ])
print()
print('loc:\n', country_dict_s.loc[['US', 'AU']])
iloc:
AU 澳大利亚
US 美国
dtype: object
loc:
US 美国
AU 澳大利亚
dtype: object
* 向量化操作
import numpy as np
s = pd.Series(np.random.randint(0, 1000, 10000))
print(s.head())
print(len(s))
0 494
1 387
2 968
3 458
4 408
dtype: int64
10000
%%timeit -n 100
total = 0
for item in s:
total += item
931 µs ± 127 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%%timeit -n 100
total = np.sum(s)
147 µs ± 39.8 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%%timeit -n 10
s = pd.Series(np.random.randint(0, 1000, 10000))
for label, value in s.iteritems():
s.loc[label] = value + 2
4.08 s ± 60.6 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
%%timeit -n 10
s = pd.Series(np.random.randint(0, 1000, 10000))
s += 2
The slowest run took 44.70 times longer than the fastest. This could mean that an intermediate result is being cached.
2.12 ms ± 4.45 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
## 2. DataFrame
* 创建Dataframe
import pandas as pd
country1 = pd.Series({'Name': '中国',
'Language': 'Chinese',
'Area': '9.597M km2',
'Happiness Rank': 79})
country2 = pd.Series({'Name': '美国',
'Language': 'English (US)',
'Area': '9.834M km2',
'Happiness Rank': 14})
country3 = pd.Series({'Name': '澳大利亚',
'Language': 'English (AU)',
'Area': '7.692M km2',
'Happiness Rank': 9})
df = pd.DataFrame([country1, country2, country3], index=['CH', 'US', 'AU'])
# 注意在jupyter中使用print和不使用print的区别
print(df)
df
Area Happiness Rank Language Name
CH 9.597M km2 79 Chinese 中国
US 9.834M km2 14 English (US) 美国
AU 7.692M km2 9 English (AU) 澳大利亚
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
Area | Happiness Rank | Language | Name | |
---|---|---|---|---|
CH | 9.597M km2 | 79 | Chinese | 中国 |
US | 9.834M km2 | 14 | English (US) | 美国 |
AU | 7.692M km2 | 9 | English (AU) | 澳大利亚 |
# 添加数据
# 如果个数小于要求的个数,会自动进行“广播”操作
# 如果大于要求的个数,会报错
df['Location'] = '地球'
print(df)
df['Region'] = ['亚洲', '北美洲', '大洋洲']
# print(df)
df
Area Happiness Rank Language Name Location
CH 9.597M km2 79 Chinese 中国 地球
US 9.834M km2 14 English (US) 美国 地球
AU 7.692M km2 9 English (AU) 澳大利亚 地球
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
Area | Happiness Rank | Language | Name | Location | Region | |
---|---|---|---|---|---|---|
CH | 9.597M km2 | 79 | Chinese | 中国 | 地球 | 亚洲 |
US | 9.834M km2 | 14 | English (US) | 美国 | 地球 | 北美洲 |
AU | 7.692M km2 | 9 | English (AU) | 澳大利亚 | 地球 | 大洋洲 |
- Dataframe索引
# 行索引
print('loc:')
print(df.loc['CH'])
print(type(df.loc['CH']))
print('iloc:')
print(df.iloc[1])
print(df['Area'])
loc:
Area 9.597M km2
Happiness Rank 79
Language Chinese
Name 中国
Location 地球
Region 亚洲
Name: CH, dtype: object
# 列索引
print(df['Area'])
print(type(df['Area']))
CH 9.597M km2
US 9.834M km2
AU 7.692M km2
Name: Area, dtype: object
# 获取不连续的列数据
print(df[['Name', 'Area']])
Name Area
CH 中国 9.597M km2
US 美国 9.834M km2
AU 澳大利亚 7.692M km2
# 混合索引
# 注意写法上的区别
print('先取出列,再取行:')
print(df['Area']['CH'])
print(df['Area'].loc['CH'])
print(df['Area'].iloc[0])
print('先取出行,再取列:')
print(df.loc['CH']['Area'])
print(df.iloc[0]['Area'])
先取出列,再取行:
9.597M km2
9.597M km2
9.597M km2
先取出行,再取列:
9.597M km2
9.597M km2
# 转换行和列
print(df.T)
CH US AU
Area 9.597M km2 9.834M km2 7.692M km2
Happiness Rank 79 14 9
Language Chinese English (US) English (AU)
Name 中国 美国 澳大利亚
Location 地球 地球 地球
Region 亚洲 北美洲 大洋洲
* 删除数据
print(df.drop(['CH']))
# 注意drop操作只是将修改后的数据copy一份,而不会对原始数据进行修改
print(df)
Area Happiness Rank Language Name Location Region
US 9.834M km2 14 English (US) 美国 地球 北美洲
AU 7.692M km2 9 English (AU) 澳大利亚 地球 大洋洲
Area Happiness Rank Language Name Location Region
CH 9.597M km2 79 Chinese 中国 地球 亚洲
US 9.834M km2 14 English (US) 美国 地球 北美洲
AU 7.692M km2 9 English (AU) 澳大利亚 地球 大洋洲
print(df.drop(['CH'], inplace=True))
# 如果使用了inplace=True,会在原始数据上进行修改,同时不会返回一个copy
print(df)
None
Area Happiness Rank Language Name Location Region
US 9.834M km2 14 English (US) 美国 地球 北美洲
AU 7.692M km2 9 English (AU) 澳大利亚 地球 大洋洲
# 如果需要删除列,需要指定axis=1
print(df.drop(['Area'], axis=1))
print(df)
Happiness Rank Language Name Location Region
US 14 English (US) 美国 地球 北美洲
AU 9 English (AU) 澳大利亚 地球 大洋洲
Area Happiness Rank Language Name Location Region
US 9.834M km2 14 English (US) 美国 地球 北美洲
AU 7.692M km2 9 English (AU) 澳大利亚 地球 大洋洲
* DataFrame的操作与加载
df['Area']
US 9.834M km2
AU 7.692M km2
Name: Area, dtype: object
# 注意从DataFrame中取出的数据进行操作后,会对原始数据产生影响
ranks = df['Happiness Rank']
ranks += 2
print(ranks)
print(df)
—————————————————————————
KeyError Traceback (most recent call last)
~/anaconda3/lib/python3.6/site-packages/pandas/core/indexes/base.py in get_loc(self, key, method, tolerance)
2524 try:
-> 2525 return self._engine.get_loc(key)
2526 except KeyError:
pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc()
pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc()
pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()
pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()
KeyError: ‘Happiness Rank’
During handling of the above exception, another exception occurred:
KeyError Traceback (most recent call last)
in ()
1 # 注意从DataFrame中取出的数据进行操作后,会对原始数据产生影响
—-> 2 ranks = df[‘Happiness Rank’]
3 ranks += 2
4 print(ranks)
5 print(df)
~/anaconda3/lib/python3.6/site-packages/pandas/core/frame.py in __getitem__(self, key)
2137 return self._getitem_multilevel(key)
2138 else:
-> 2139 return self._getitem_column(key)
2140
2141 def _getitem_column(self, key):
~/anaconda3/lib/python3.6/site-packages/pandas/core/frame.py in _getitem_column(self, key)
2144 # get column
2145 if self.columns.is_unique:
-> 2146 return self._get_item_cache(key)
2147
2148 # duplicate columns & possible reduce dimensionality
~/anaconda3/lib/python3.6/site-packages/pandas/core/generic.py in _get_item_cache(self, item)
1840 res = cache.get(item)
1841 if res is None:
-> 1842 values = self._data.get(item)
1843 res = self._box_item_values(item, values)
1844 cache[item] = res
~/anaconda3/lib/python3.6/site-packages/pandas/core/internals.py in get(self, item, fastpath)
3841
3842 if not isna(item):
-> 3843 loc = self.items.get_loc(item)
3844 else:
3845 indexer = np.arange(len(self.items))[isna(self.items)]
~/anaconda3/lib/python3.6/site-packages/pandas/core/indexes/base.py in get_loc(self, key, method, tolerance)
2525 return self._engine.get_loc(key)
2526 except KeyError:
-> 2527 return self._engine.get_loc(self._maybe_cast_indexer(key))
2528
2529 indexer = self.get_indexer([key], method=method, tolerance=tolerance)
pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc()
pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc()
pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()
pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()
KeyError: ‘Happiness Rank’
# 注意从DataFrame中取出的数据进行操作后,会对原始数据产生影响
# 安全的操作是使用copy()
ranks = df['Happiness Rank'].copy()
ranks += 2
print(ranks)
print(df)
# 加载csv文件数据
import pandas as pd
reprot_2015_df = pd.read_csv('./2015.csv')
print('2015年数据预览:')
#print(reprot_2015_df.head())
reprot_2015_df.head()
2015年数据预览:
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
Country | Region | Happiness Rank | Happiness Score | Standard Error | Economy (GDP per Capita) | Family | Health (Life Expectancy) | Freedom | Trust (Government Corruption) | Generosity | Dystopia Residual | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Switzerland | Western Europe | 1 | 7.587 | 0.03411 | 1.39651 | 1.34951 | 0.94143 | 0.66557 | 0.41978 | 0.29678 | 2.51738 |
1 | Iceland | Western Europe | 2 | 7.561 | 0.04884 | 1.30232 | 1.40223 | 0.94784 | 0.62877 | 0.14145 | 0.43630 | 2.70201 |
2 | Denmark | Western Europe | 3 | 7.527 | 0.03328 | 1.32548 | 1.36058 | 0.87464 | 0.64938 | 0.48357 | 0.34139 | 2.49204 |
3 | Norway | Western Europe | 4 | 7.522 | 0.03880 | 1.45900 | 1.33095 | 0.88521 | 0.66973 | 0.36503 | 0.34699 | 2.46531 |
4 | Canada | North America | 5 | 7.427 | 0.03553 | 1.32629 | 1.32261 | 0.90563 | 0.63297 | 0.32957 | 0.45811 | 2.45176 |
print(reprot_2015_df.info())
## 3. 索引
# 使用index_col指定索引列
# 使用usecols指定需要读取的列
import pandas as pd
reprot_2016_df = pd.read_csv('./2016.csv',
index_col='Country',
usecols=['Country', 'Happiness Rank', 'Happiness Score', 'Region'])
# 数据预览
reprot_2016_df.head()
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
Region | Happiness Rank | Happiness Score | |
---|---|---|---|
Country | |||
Denmark | Western Europe | 1 | 7.526 |
Switzerland | Western Europe | 2 | 7.509 |
Iceland | Western Europe | 3 | 7.501 |
Norway | Western Europe | 4 | 7.498 |
Finland | Western Europe | 5 | 7.413 |
print('列名(column):', reprot_2016_df.columns)
print('行名(index):', reprot_2016_df.index)
列名(column): Index([‘Region’, ‘Happiness Rank’, ‘Happiness Score’], dtype=’object’)
行名(index): Index([‘Denmark’, ‘Switzerland’, ‘Iceland’, ‘Norway’, ‘Finland’, ‘Canada’,
‘Netherlands’, ‘New Zealand’, ‘Australia’, ‘Sweden’,
…
‘Madagascar’, ‘Tanzania’, ‘Liberia’, ‘Guinea’, ‘Rwanda’, ‘Benin’,
‘Afghanistan’, ‘Togo’, ‘Syria’, ‘Burundi’],
dtype=’object’, name=’Country’, length=157)
# 注意index是不可变的
reprot_2016_df.index[0] = '丹麦'
—————————————————————————
TypeError Traceback (most recent call last)
in ()
1 # 注意index是不可变的
—-> 2 reprot_2016_df.index[0] = ‘丹麦’
~/anaconda3/lib/python3.6/site-packages/pandas/core/indexes/base.py in __setitem__(self, key, value)
1722
1723 def __setitem__(self, key, value):
-> 1724 raise TypeError(“Index does not support mutable operations”)
1725
1726 def __getitem__(self, key):
TypeError: Index does not support mutable operations
# 重置index
# 注意inplace加与不加的区别
reprot_2016_df.reset_index(inplace=True)
reprot_2016_df.head()
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
Country | Region | Happiness Rank | Happiness Score | |
---|---|---|---|---|
0 | Denmark | Western Europe | 1 | 7.526 |
1 | Switzerland | Western Europe | 2 | 7.509 |
2 | Iceland | Western Europe | 3 | 7.501 |
3 | Norway | Western Europe | 4 | 7.498 |
4 | Finland | Western Europe | 5 | 7.413 |
# 重命名列名
reprot_2016_df = reprot_2016_df.rename(columns={'Region': '地区', 'Hapiness Rank': '排名', 'Hapiness Score': '幸福指数'})
reprot_2016_df.head()
# 重命名列名,注意inplace的使用
reprot_2016_df.rename(columns={'Region': '地区', 'Happiness Rank': '排名', 'Happiness Score': '幸福指数'},
inplace=True)
reprot_2016_df.head()
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
## 4. Boolean Mask
Country | 地区 | 排名 | 幸福指数 | |
---|---|---|---|---|
0 | Denmark | Western Europe | 1 | 7.526 |
1 | Switzerland | Western Europe | 2 | 7.509 |
2 | Iceland | Western Europe | 3 | 7.501 |
3 | Norway | Western Europe | 4 | 7.498 |
4 | Finland | Western Europe | 5 | 7.413 |
reprot_2016_df.head()
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
Country | 地区 | 排名 | 幸福指数 | |
---|---|---|---|---|
0 | Denmark | Western Europe | 1 | 7.526 |
1 | Switzerland | Western Europe | 2 | 7.509 |
2 | Iceland | Western Europe | 3 | 7.501 |
3 | Norway | Western Europe | 4 | 7.498 |
4 | Finland | Western Europe | 5 | 7.413 |
# 过滤 Western Europe 地区的国家
# only_western_europe = reprot_2016_df['地区'] == 'Western Europe'
reprot_2016_df[reprot_2016_df['地区'] == 'Western Europe']
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
Country | 地区 | 排名 | 幸福指数 | |
---|---|---|---|---|
0 | Denmark | Western Europe | 1 | 7.526 |
1 | Switzerland | Western Europe | 2 | 7.509 |
2 | Iceland | Western Europe | 3 | 7.501 |
3 | Norway | Western Europe | 4 | 7.498 |
4 | Finland | Western Europe | 5 | 7.413 |
6 | Netherlands | Western Europe | 7 | 7.339 |
9 | Sweden | Western Europe | 10 | 7.291 |
11 | Austria | Western Europe | 12 | 7.119 |
15 | Germany | Western Europe | 16 | 6.994 |
17 | Belgium | Western Europe | 18 | 6.929 |
18 | Ireland | Western Europe | 19 | 6.907 |
19 | Luxembourg | Western Europe | 20 | 6.871 |
22 | United Kingdom | Western Europe | 23 | 6.725 |
29 | Malta | Western Europe | 30 | 6.488 |
31 | France | Western Europe | 32 | 6.478 |
36 | Spain | Western Europe | 37 | 6.361 |
49 | Italy | Western Europe | 50 | 5.977 |
61 | North Cyprus | Western Europe | 62 | 5.771 |
68 | Cyprus | Western Europe | 69 | 5.546 |
93 | Portugal | Western Europe | 94 | 5.123 |
98 | Greece | Western Europe | 99 | 5.033 |
# 过滤 Western Europe 地区的国家
# 并且排名在10之外
only_western_europe_10 = (reprot_2016_df['地区'] == 'Western Europe') & (reprot_2016_df['排名'] > 10)
only_western_europe_10
0 False
1 False
2 False
3 False
4 False
5 False
6 False
7 False
8 False
9 False
10 False
11 True
12 False
13 False
14 False
15 True
16 False
17 True
18 True
19 True
20 False
21 False
22 True
23 False
24 False
25 False
26 False
27 False
28 False
29 True
…
127 False
128 False
129 False
130 False
131 False
132 False
133 False
134 False
135 False
136 False
137 False
138 False
139 False
140 False
141 False
142 False
143 False
144 False
145 False
146 False
147 False
148 False
149 False
150 False
151 False
152 False
153 False
154 False
155 False
156 False
Length: 157, dtype: bool
# 叠加 boolean mask 得到最终结果
reprot_2016_df[only_western_europe_10]
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
Country | 地区 | 排名 | 幸福指数 | |
---|---|---|---|---|
11 | Austria | Western Europe | 12 | 7.119 |
15 | Germany | Western Europe | 16 | 6.994 |
17 | Belgium | Western Europe | 18 | 6.929 |
18 | Ireland | Western Europe | 19 | 6.907 |
19 | Luxembourg | Western Europe | 20 | 6.871 |
22 | United Kingdom | Western Europe | 23 | 6.725 |
29 | Malta | Western Europe | 30 | 6.488 |
31 | France | Western Europe | 32 | 6.478 |
36 | Spain | Western Europe | 37 | 6.361 |
49 | Italy | Western Europe | 50 | 5.977 |
61 | North Cyprus | Western Europe | 62 | 5.771 |
68 | Cyprus | Western Europe | 69 | 5.546 |
93 | Portugal | Western Europe | 94 | 5.123 |
98 | Greece | Western Europe | 99 | 5.033 |
# 熟练以后可以写在一行中
reprot_2016_df[(reprot_2016_df['地区'] == 'Western Europe') & (reprot_2016_df['排名'] > 10)]
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
## 5. 层级索引
Country | 地区 | 排名 | 幸福指数 | |
---|---|---|---|---|
11 | Austria | Western Europe | 12 | 7.119 |
15 | Germany | Western Europe | 16 | 6.994 |
17 | Belgium | Western Europe | 18 | 6.929 |
18 | Ireland | Western Europe | 19 | 6.907 |
19 | Luxembourg | Western Europe | 20 | 6.871 |
22 | United Kingdom | Western Europe | 23 | 6.725 |
29 | Malta | Western Europe | 30 | 6.488 |
31 | France | Western Europe | 32 | 6.478 |
36 | Spain | Western Europe | 37 | 6.361 |
49 | Italy | Western Europe | 50 | 5.977 |
61 | North Cyprus | Western Europe | 62 | 5.771 |
68 | Cyprus | Western Europe | 69 | 5.546 |
93 | Portugal | Western Europe | 94 | 5.123 |
98 | Greece | Western Europe | 99 | 5.033 |
reprot_2015_df.head()
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
Country | Region | Happiness Rank | Happiness Score | Standard Error | Economy (GDP per Capita) | Family | Health (Life Expectancy) | Freedom | Trust (Government Corruption) | Generosity | Dystopia Residual | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Switzerland | Western Europe | 1 | 7.587 | 0.03411 | 1.39651 | 1.34951 | 0.94143 | 0.66557 | 0.41978 | 0.29678 | 2.51738 |
1 | Iceland | Western Europe | 2 | 7.561 | 0.04884 | 1.30232 | 1.40223 | 0.94784 | 0.62877 | 0.14145 | 0.43630 | 2.70201 |
2 | Denmark | Western Europe | 3 | 7.527 | 0.03328 | 1.32548 | 1.36058 | 0.87464 | 0.64938 | 0.48357 | 0.34139 | 2.49204 |
3 | Norway | Western Europe | 4 | 7.522 | 0.03880 | 1.45900 | 1.33095 | 0.88521 | 0.66973 | 0.36503 | 0.34699 | 2.46531 |
4 | Canada | North America | 5 | 7.427 | 0.03553 | 1.32629 | 1.32261 | 0.90563 | 0.63297 | 0.32957 | 0.45811 | 2.45176 |
# 设置层级索引
report_2015_df2 = reprot_2015_df.set_index(['Region', 'Country'])
report_2015_df2.head(20)
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
Happiness Rank | Happiness Score | Standard Error | Economy (GDP per Capita) | Family | Health (Life Expectancy) | Freedom | Trust (Government Corruption) | Generosity | Dystopia Residual | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Region | Country | ||||||||||
Western Europe | Switzerland | 1 | 7.587 | 0.03411 | 1.39651 | 1.34951 | 0.94143 | 0.66557 | 0.41978 | 0.29678 | 2.51738 |
Iceland | 2 | 7.561 | 0.04884 | 1.30232 | 1.40223 | 0.94784 | 0.62877 | 0.14145 | 0.43630 | 2.70201 | |
Denmark | 3 | 7.527 | 0.03328 | 1.32548 | 1.36058 | 0.87464 | 0.64938 | 0.48357 | 0.34139 | 2.49204 | |
Norway | 4 | 7.522 | 0.03880 | 1.45900 | 1.33095 | 0.88521 | 0.66973 | 0.36503 | 0.34699 | 2.46531 | |
North America | Canada | 5 | 7.427 | 0.03553 | 1.32629 | 1.32261 | 0.90563 | 0.63297 | 0.32957 | 0.45811 | 2.45176 |
Western Europe | Finland | 6 | 7.406 | 0.03140 | 1.29025 | 1.31826 | 0.88911 | 0.64169 | 0.41372 | 0.23351 | 2.61955 |
Netherlands | 7 | 7.378 | 0.02799 | 1.32944 | 1.28017 | 0.89284 | 0.61576 | 0.31814 | 0.47610 | 2.46570 | |
Sweden | 8 | 7.364 | 0.03157 | 1.33171 | 1.28907 | 0.91087 | 0.65980 | 0.43844 | 0.36262 | 2.37119 | |
Australia and New Zealand | New Zealand | 9 | 7.286 | 0.03371 | 1.25018 | 1.31967 | 0.90837 | 0.63938 | 0.42922 | 0.47501 | 2.26425 |
Australia | 10 | 7.284 | 0.04083 | 1.33358 | 1.30923 | 0.93156 | 0.65124 | 0.35637 | 0.43562 | 2.26646 | |
Middle East and Northern Africa | Israel | 11 | 7.278 | 0.03470 | 1.22857 | 1.22393 | 0.91387 | 0.41319 | 0.07785 | 0.33172 | 3.08854 |
Latin America and Caribbean | Costa Rica | 12 | 7.226 | 0.04454 | 0.95578 | 1.23788 | 0.86027 | 0.63376 | 0.10583 | 0.25497 | 3.17728 |
Western Europe | Austria | 13 | 7.200 | 0.03751 | 1.33723 | 1.29704 | 0.89042 | 0.62433 | 0.18676 | 0.33088 | 2.53320 |
Latin America and Caribbean | Mexico | 14 | 7.187 | 0.04176 | 1.02054 | 0.91451 | 0.81444 | 0.48181 | 0.21312 | 0.14074 | 3.60214 |
North America | United States | 15 | 7.119 | 0.03839 | 1.39451 | 1.24711 | 0.86179 | 0.54604 | 0.15890 | 0.40105 | 2.51011 |
Latin America and Caribbean | Brazil | 16 | 6.983 | 0.04076 | 0.98124 | 1.23287 | 0.69702 | 0.49049 | 0.17521 | 0.14574 | 3.26001 |
Western Europe | Luxembourg | 17 | 6.946 | 0.03499 | 1.56391 | 1.21963 | 0.91894 | 0.61583 | 0.37798 | 0.28034 | 1.96961 |
Ireland | 18 | 6.940 | 0.03676 | 1.33596 | 1.36948 | 0.89533 | 0.61777 | 0.28703 | 0.45901 | 1.97570 | |
Belgium | 19 | 6.937 | 0.03595 | 1.30782 | 1.28566 | 0.89667 | 0.58450 | 0.22540 | 0.22250 | 2.41484 | |
Middle East and Northern Africa | United Arab Emirates | 20 | 6.901 | 0.03729 | 1.42727 | 1.12575 | 0.80925 | 0.64157 | 0.38583 | 0.26428 | 2.24743 |
# level0 索引
report_2015_df2.loc['Western Europe']
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
Happiness Rank | Happiness Score | Standard Error | Economy (GDP per Capita) | Family | Health (Life Expectancy) | Freedom | Trust (Government Corruption) | Generosity | Dystopia Residual | |
---|---|---|---|---|---|---|---|---|---|---|
Country | ||||||||||
Switzerland | 1 | 7.587 | 0.03411 | 1.39651 | 1.34951 | 0.94143 | 0.66557 | 0.41978 | 0.29678 | 2.51738 |
Iceland | 2 | 7.561 | 0.04884 | 1.30232 | 1.40223 | 0.94784 | 0.62877 | 0.14145 | 0.43630 | 2.70201 |
Denmark | 3 | 7.527 | 0.03328 | 1.32548 | 1.36058 | 0.87464 | 0.64938 | 0.48357 | 0.34139 | 2.49204 |
Norway | 4 | 7.522 | 0.03880 | 1.45900 | 1.33095 | 0.88521 | 0.66973 | 0.36503 | 0.34699 | 2.46531 |
Finland | 6 | 7.406 | 0.03140 | 1.29025 | 1.31826 | 0.88911 | 0.64169 | 0.41372 | 0.23351 | 2.61955 |
Netherlands | 7 | 7.378 | 0.02799 | 1.32944 | 1.28017 | 0.89284 | 0.61576 | 0.31814 | 0.47610 | 2.46570 |
Sweden | 8 | 7.364 | 0.03157 | 1.33171 | 1.28907 | 0.91087 | 0.65980 | 0.43844 | 0.36262 | 2.37119 |
Austria | 13 | 7.200 | 0.03751 | 1.33723 | 1.29704 | 0.89042 | 0.62433 | 0.18676 | 0.33088 | 2.53320 |
Luxembourg | 17 | 6.946 | 0.03499 | 1.56391 | 1.21963 | 0.91894 | 0.61583 | 0.37798 | 0.28034 | 1.96961 |
Ireland | 18 | 6.940 | 0.03676 | 1.33596 | 1.36948 | 0.89533 | 0.61777 | 0.28703 | 0.45901 | 1.97570 |
Belgium | 19 | 6.937 | 0.03595 | 1.30782 | 1.28566 | 0.89667 | 0.58450 | 0.22540 | 0.22250 | 2.41484 |
United Kingdom | 21 | 6.867 | 0.01866 | 1.26637 | 1.28548 | 0.90943 | 0.59625 | 0.32067 | 0.51912 | 1.96994 |
Germany | 26 | 6.750 | 0.01848 | 1.32792 | 1.29937 | 0.89186 | 0.61477 | 0.21843 | 0.28214 | 2.11569 |
France | 29 | 6.575 | 0.03512 | 1.27778 | 1.26038 | 0.94579 | 0.55011 | 0.20646 | 0.12332 | 2.21126 |
Spain | 36 | 6.329 | 0.03468 | 1.23011 | 1.31379 | 0.95562 | 0.45951 | 0.06398 | 0.18227 | 2.12367 |
Malta | 37 | 6.302 | 0.04206 | 1.20740 | 1.30203 | 0.88721 | 0.60365 | 0.13586 | 0.51752 | 1.64880 |
Italy | 50 | 5.948 | 0.03914 | 1.25114 | 1.19777 | 0.95446 | 0.26236 | 0.02901 | 0.22823 | 2.02518 |
North Cyprus | 66 | 5.695 | 0.05635 | 1.20806 | 1.07008 | 0.92356 | 0.49027 | 0.14280 | 0.26169 | 1.59888 |
Cyprus | 67 | 5.689 | 0.05580 | 1.20813 | 0.89318 | 0.92356 | 0.40672 | 0.06146 | 0.30638 | 1.88931 |
Portugal | 88 | 5.102 | 0.04802 | 1.15991 | 1.13935 | 0.87519 | 0.51469 | 0.01078 | 0.13719 | 1.26462 |
Greece | 102 | 4.857 | 0.05062 | 1.15406 | 0.92933 | 0.88213 | 0.07699 | 0.01397 | 0.00000 | 1.80101 |
# 两层索引
report_2015_df2.loc['Western Europe', 'Switzerland']
Happiness Rank 1.00000
Happiness Score 7.58700
Standard Error 0.03411
Economy (GDP per Capita) 1.39651
Family 1.34951
Health (Life Expectancy) 0.94143
Freedom 0.66557
Trust (Government Corruption) 0.41978
Generosity 0.29678
Dystopia Residual 2.51738
Name: (Western Europe, Switzerland), dtype: float64
# 交换分层顺序
report_2015_df2.swaplevel()
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
Happiness Rank | Happiness Score | Standard Error | Economy (GDP per Capita) | Family | Health (Life Expectancy) | Freedom | Trust (Government Corruption) | Generosity | Dystopia Residual | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Country | Region | ||||||||||
Switzerland | Western Europe | 1 | 7.587 | 0.03411 | 1.39651 | 1.34951 | 0.94143 | 0.66557 | 0.41978 | 0.29678 | 2.51738 |
Iceland | Western Europe | 2 | 7.561 | 0.04884 | 1.30232 | 1.40223 | 0.94784 | 0.62877 | 0.14145 | 0.43630 | 2.70201 |
Denmark | Western Europe | 3 | 7.527 | 0.03328 | 1.32548 | 1.36058 | 0.87464 | 0.64938 | 0.48357 | 0.34139 | 2.49204 |
Norway | Western Europe | 4 | 7.522 | 0.03880 | 1.45900 | 1.33095 | 0.88521 | 0.66973 | 0.36503 | 0.34699 | 2.46531 |
Canada | North America | 5 | 7.427 | 0.03553 | 1.32629 | 1.32261 | 0.90563 | 0.63297 | 0.32957 | 0.45811 | 2.45176 |
Finland | Western Europe | 6 | 7.406 | 0.03140 | 1.29025 | 1.31826 | 0.88911 | 0.64169 | 0.41372 | 0.23351 | 2.61955 |
Netherlands | Western Europe | 7 | 7.378 | 0.02799 | 1.32944 | 1.28017 | 0.89284 | 0.61576 | 0.31814 | 0.47610 | 2.46570 |
Sweden | Western Europe | 8 | 7.364 | 0.03157 | 1.33171 | 1.28907 | 0.91087 | 0.65980 | 0.43844 | 0.36262 | 2.37119 |
New Zealand | Australia and New Zealand | 9 | 7.286 | 0.03371 | 1.25018 | 1.31967 | 0.90837 | 0.63938 | 0.42922 | 0.47501 | 2.26425 |
Australia | Australia and New Zealand | 10 | 7.284 | 0.04083 | 1.33358 | 1.30923 | 0.93156 | 0.65124 | 0.35637 | 0.43562 | 2.26646 |
Israel | Middle East and Northern Africa | 11 | 7.278 | 0.03470 | 1.22857 | 1.22393 | 0.91387 | 0.41319 | 0.07785 | 0.33172 | 3.08854 |
Costa Rica | Latin America and Caribbean | 12 | 7.226 | 0.04454 | 0.95578 | 1.23788 | 0.86027 | 0.63376 | 0.10583 | 0.25497 | 3.17728 |
Austria | Western Europe | 13 | 7.200 | 0.03751 | 1.33723 | 1.29704 | 0.89042 | 0.62433 | 0.18676 | 0.33088 | 2.53320 |
Mexico | Latin America and Caribbean | 14 | 7.187 | 0.04176 | 1.02054 | 0.91451 | 0.81444 | 0.48181 | 0.21312 | 0.14074 | 3.60214 |
United States | North America | 15 | 7.119 | 0.03839 | 1.39451 | 1.24711 | 0.86179 | 0.54604 | 0.15890 | 0.40105 | 2.51011 |
Brazil | Latin America and Caribbean | 16 | 6.983 | 0.04076 | 0.98124 | 1.23287 | 0.69702 | 0.49049 | 0.17521 | 0.14574 | 3.26001 |
Luxembourg | Western Europe | 17 | 6.946 | 0.03499 | 1.56391 | 1.21963 | 0.91894 | 0.61583 | 0.37798 | 0.28034 | 1.96961 |
Ireland | Western Europe | 18 | 6.940 | 0.03676 | 1.33596 | 1.36948 | 0.89533 | 0.61777 | 0.28703 | 0.45901 | 1.97570 |
Belgium | Western Europe | 19 | 6.937 | 0.03595 | 1.30782 | 1.28566 | 0.89667 | 0.58450 | 0.22540 | 0.22250 | 2.41484 |
United Arab Emirates | Middle East and Northern Africa | 20 | 6.901 | 0.03729 | 1.42727 | 1.12575 | 0.80925 | 0.64157 | 0.38583 | 0.26428 | 2.24743 |
United Kingdom | Western Europe | 21 | 6.867 | 0.01866 | 1.26637 | 1.28548 | 0.90943 | 0.59625 | 0.32067 | 0.51912 | 1.96994 |
Oman | Middle East and Northern Africa | 22 | 6.853 | 0.05335 | 1.36011 | 1.08182 | 0.76276 | 0.63274 | 0.32524 | 0.21542 | 2.47489 |
Venezuela | Latin America and Caribbean | 23 | 6.810 | 0.06476 | 1.04424 | 1.25596 | 0.72052 | 0.42908 | 0.11069 | 0.05841 | 3.19131 |
Singapore | Southeastern Asia | 24 | 6.798 | 0.03780 | 1.52186 | 1.02000 | 1.02525 | 0.54252 | 0.49210 | 0.31105 | 1.88501 |
Panama | Latin America and Caribbean | 25 | 6.786 | 0.04910 | 1.06353 | 1.19850 | 0.79661 | 0.54210 | 0.09270 | 0.24434 | 2.84848 |
Germany | Western Europe | 26 | 6.750 | 0.01848 | 1.32792 | 1.29937 | 0.89186 | 0.61477 | 0.21843 | 0.28214 | 2.11569 |
Chile | Latin America and Caribbean | 27 | 6.670 | 0.05800 | 1.10715 | 1.12447 | 0.85857 | 0.44132 | 0.12869 | 0.33363 | 2.67585 |
Qatar | Middle East and Northern Africa | 28 | 6.611 | 0.06257 | 1.69042 | 1.07860 | 0.79733 | 0.64040 | 0.52208 | 0.32573 | 1.55674 |
France | Western Europe | 29 | 6.575 | 0.03512 | 1.27778 | 1.26038 | 0.94579 | 0.55011 | 0.20646 | 0.12332 | 2.21126 |
Argentina | Latin America and Caribbean | 30 | 6.574 | 0.04612 | 1.05351 | 1.24823 | 0.78723 | 0.44974 | 0.08484 | 0.11451 | 2.83600 |
… | … | … | … | … | … | … | … | … | … | … | … |
Myanmar | Southeastern Asia | 129 | 4.307 | 0.04351 | 0.27108 | 0.70905 | 0.48246 | 0.44017 | 0.19034 | 0.79588 | 1.41805 |
Georgia | Central and Eastern Europe | 130 | 4.297 | 0.04221 | 0.74190 | 0.38562 | 0.72926 | 0.40577 | 0.38331 | 0.05547 | 1.59541 |
Malawi | Sub-Saharan Africa | 131 | 4.292 | 0.06130 | 0.01604 | 0.41134 | 0.22562 | 0.43054 | 0.06977 | 0.33128 | 2.80791 |
Sri Lanka | Southern Asia | 132 | 4.271 | 0.03751 | 0.83524 | 1.01905 | 0.70806 | 0.53726 | 0.09179 | 0.40828 | 0.67108 |
Cameroon | Sub-Saharan Africa | 133 | 4.252 | 0.04678 | 0.42250 | 0.88767 | 0.23402 | 0.49309 | 0.05786 | 0.20618 | 1.95071 |
Bulgaria | Central and Eastern Europe | 134 | 4.218 | 0.04828 | 1.01216 | 1.10614 | 0.76649 | 0.30587 | 0.00872 | 0.11921 | 0.89991 |
Egypt | Middle East and Northern Africa | 135 | 4.194 | 0.03260 | 0.88180 | 0.74700 | 0.61712 | 0.17288 | 0.06324 | 0.11291 | 1.59927 |
Yemen | Middle East and Northern Africa | 136 | 4.077 | 0.04367 | 0.54649 | 0.68093 | 0.40064 | 0.35571 | 0.07854 | 0.09131 | 1.92313 |
Angola | Sub-Saharan Africa | 137 | 4.033 | 0.04758 | 0.75778 | 0.86040 | 0.16683 | 0.10384 | 0.07122 | 0.12344 | 1.94939 |
Mali | Sub-Saharan Africa | 138 | 3.995 | 0.05602 | 0.26074 | 1.03526 | 0.20583 | 0.38857 | 0.12352 | 0.18798 | 1.79293 |
Congo (Brazzaville) | Sub-Saharan Africa | 139 | 3.989 | 0.06682 | 0.67866 | 0.66290 | 0.31051 | 0.41466 | 0.11686 | 0.12388 | 1.68135 |
Comoros | Sub-Saharan Africa | 140 | 3.956 | 0.04797 | 0.23906 | 0.79273 | 0.36315 | 0.22917 | 0.19900 | 0.17441 | 1.95812 |
Uganda | Sub-Saharan Africa | 141 | 3.931 | 0.04317 | 0.21102 | 1.13299 | 0.33861 | 0.45727 | 0.07267 | 0.29066 | 1.42766 |
Senegal | Sub-Saharan Africa | 142 | 3.904 | 0.03608 | 0.36498 | 0.97619 | 0.43540 | 0.36772 | 0.10713 | 0.20843 | 1.44395 |
Gabon | Sub-Saharan Africa | 143 | 3.896 | 0.04547 | 1.06024 | 0.90528 | 0.43372 | 0.31914 | 0.11091 | 0.06822 | 0.99895 |
Niger | Sub-Saharan Africa | 144 | 3.845 | 0.03602 | 0.06940 | 0.77265 | 0.29707 | 0.47692 | 0.15639 | 0.19387 | 1.87877 |
Cambodia | Southeastern Asia | 145 | 3.819 | 0.05069 | 0.46038 | 0.62736 | 0.61114 | 0.66246 | 0.07247 | 0.40359 | 0.98195 |
Tanzania | Sub-Saharan Africa | 146 | 3.781 | 0.05061 | 0.28520 | 1.00268 | 0.38215 | 0.32878 | 0.05747 | 0.34377 | 1.38079 |
Madagascar | Sub-Saharan Africa | 147 | 3.681 | 0.03633 | 0.20824 | 0.66801 | 0.46721 | 0.19184 | 0.08124 | 0.21333 | 1.85100 |
Central African Republic | Sub-Saharan Africa | 148 | 3.678 | 0.06112 | 0.07850 | 0.00000 | 0.06699 | 0.48879 | 0.08289 | 0.23835 | 2.72230 |
Chad | Sub-Saharan Africa | 149 | 3.667 | 0.03830 | 0.34193 | 0.76062 | 0.15010 | 0.23501 | 0.05269 | 0.18386 | 1.94296 |
Guinea | Sub-Saharan Africa | 150 | 3.656 | 0.03590 | 0.17417 | 0.46475 | 0.24009 | 0.37725 | 0.12139 | 0.28657 | 1.99172 |
Ivory Coast | Sub-Saharan Africa | 151 | 3.655 | 0.05141 | 0.46534 | 0.77115 | 0.15185 | 0.46866 | 0.17922 | 0.20165 | 1.41723 |
Burkina Faso | Sub-Saharan Africa | 152 | 3.587 | 0.04324 | 0.25812 | 0.85188 | 0.27125 | 0.39493 | 0.12832 | 0.21747 | 1.46494 |
Afghanistan | Southern Asia | 153 | 3.575 | 0.03084 | 0.31982 | 0.30285 | 0.30335 | 0.23414 | 0.09719 | 0.36510 | 1.95210 |
Rwanda | Sub-Saharan Africa | 154 | 3.465 | 0.03464 | 0.22208 | 0.77370 | 0.42864 | 0.59201 | 0.55191 | 0.22628 | 0.67042 |
Benin | Sub-Saharan Africa | 155 | 3.340 | 0.03656 | 0.28665 | 0.35386 | 0.31910 | 0.48450 | 0.08010 | 0.18260 | 1.63328 |
Syria | Middle East and Northern Africa | 156 | 3.006 | 0.05015 | 0.66320 | 0.47489 | 0.72193 | 0.15684 | 0.18906 | 0.47179 | 0.32858 |
Burundi | Sub-Saharan Africa | 157 | 2.905 | 0.08658 | 0.01530 | 0.41587 | 0.22396 | 0.11850 | 0.10062 | 0.19727 | 1.83302 |
Togo | Sub-Saharan Africa | 158 | 2.839 | 0.06727 | 0.20868 | 0.13995 | 0.28443 | 0.36453 | 0.10731 | 0.16681 | 1.56726 |
158 rows × 10 columns
# 排序分层
report_2015_df2.sort_index(level=0)
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
Happiness Rank | Happiness Score | Standard Error | Economy (GDP per Capita) | Family | Health (Life Expectancy) | Freedom | Trust (Government Corruption) | Generosity | Dystopia Residual | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Region | Country | ||||||||||
Australia and New Zealand | Australia | 10 | 7.284 | 0.04083 | 1.33358 | 1.30923 | 0.93156 | 0.65124 | 0.35637 | 0.43562 | 2.26646 |
New Zealand | 9 | 7.286 | 0.03371 | 1.25018 | 1.31967 | 0.90837 | 0.63938 | 0.42922 | 0.47501 | 2.26425 | |
Central and Eastern Europe | Albania | 95 | 4.959 | 0.05013 | 0.87867 | 0.80434 | 0.81325 | 0.35733 | 0.06413 | 0.14272 | 1.89894 |
Armenia | 127 | 4.350 | 0.04763 | 0.76821 | 0.77711 | 0.72990 | 0.19847 | 0.03900 | 0.07855 | 1.75873 | |
Azerbaijan | 80 | 5.212 | 0.03363 | 1.02389 | 0.93793 | 0.64045 | 0.37030 | 0.16065 | 0.07799 | 2.00073 | |
Belarus | 59 | 5.813 | 0.03938 | 1.03192 | 1.23289 | 0.73608 | 0.37938 | 0.19090 | 0.11046 | 2.13090 | |
Bosnia and Herzegovina | 96 | 4.949 | 0.06913 | 0.83223 | 0.91916 | 0.79081 | 0.09245 | 0.00227 | 0.24808 | 2.06367 | |
Bulgaria | 134 | 4.218 | 0.04828 | 1.01216 | 1.10614 | 0.76649 | 0.30587 | 0.00872 | 0.11921 | 0.89991 | |
Croatia | 62 | 5.759 | 0.04394 | 1.08254 | 0.79624 | 0.78805 | 0.25883 | 0.02430 | 0.05444 | 2.75414 | |
Czech Republic | 31 | 6.505 | 0.04168 | 1.17898 | 1.20643 | 0.84483 | 0.46364 | 0.02652 | 0.10686 | 2.67782 | |
Estonia | 73 | 5.429 | 0.04013 | 1.15174 | 1.22791 | 0.77361 | 0.44888 | 0.15184 | 0.08680 | 1.58782 | |
Georgia | 130 | 4.297 | 0.04221 | 0.74190 | 0.38562 | 0.72926 | 0.40577 | 0.38331 | 0.05547 | 1.59541 | |
Hungary | 104 | 4.800 | 0.06107 | 1.12094 | 1.20215 | 0.75905 | 0.32112 | 0.02758 | 0.12800 | 1.24074 | |
Kazakhstan | 54 | 5.855 | 0.04114 | 1.12254 | 1.12241 | 0.64368 | 0.51649 | 0.08454 | 0.11827 | 2.24729 | |
Kosovo | 69 | 5.589 | 0.05018 | 0.80148 | 0.81198 | 0.63132 | 0.24749 | 0.04741 | 0.28310 | 2.76579 | |
Kyrgyzstan | 77 | 5.286 | 0.03823 | 0.47428 | 1.15115 | 0.65088 | 0.43477 | 0.04232 | 0.30030 | 2.23270 | |
Latvia | 89 | 5.098 | 0.04640 | 1.11312 | 1.09562 | 0.72437 | 0.29671 | 0.06332 | 0.18226 | 1.62215 | |
Lithuania | 56 | 5.833 | 0.03843 | 1.14723 | 1.25745 | 0.73128 | 0.21342 | 0.01031 | 0.02641 | 2.44649 | |
Macedonia | 93 | 5.007 | 0.05376 | 0.91851 | 1.00232 | 0.73545 | 0.33457 | 0.05327 | 0.22359 | 1.73933 | |
Moldova | 52 | 5.889 | 0.03799 | 0.59448 | 1.01528 | 0.61826 | 0.32818 | 0.01615 | 0.20951 | 3.10712 | |
Montenegro | 82 | 5.192 | 0.05235 | 0.97438 | 0.90557 | 0.72521 | 0.18260 | 0.14296 | 0.16140 | 2.10017 | |
Poland | 60 | 5.791 | 0.04263 | 1.12555 | 1.27948 | 0.77903 | 0.53122 | 0.04212 | 0.16759 | 1.86565 | |
Romania | 86 | 5.124 | 0.06607 | 1.04345 | 0.88588 | 0.76890 | 0.35068 | 0.00649 | 0.13748 | 1.93129 | |
Russia | 64 | 5.716 | 0.03135 | 1.13764 | 1.23617 | 0.66926 | 0.36679 | 0.03005 | 0.00199 | 2.27394 | |
Serbia | 87 | 5.123 | 0.04864 | 0.92053 | 1.00964 | 0.74836 | 0.20107 | 0.02617 | 0.19231 | 2.02500 | |
Slovakia | 45 | 5.995 | 0.04267 | 1.16891 | 1.26999 | 0.78902 | 0.31751 | 0.03431 | 0.16893 | 2.24639 | |
Slovenia | 55 | 5.848 | 0.04251 | 1.18498 | 1.27385 | 0.87337 | 0.60855 | 0.03787 | 0.25328 | 1.61583 | |
Tajikistan | 106 | 4.786 | 0.03198 | 0.39047 | 0.85563 | 0.57379 | 0.47216 | 0.15072 | 0.22974 | 2.11399 | |
Turkmenistan | 70 | 5.548 | 0.04175 | 0.95847 | 1.22668 | 0.53886 | 0.47610 | 0.30844 | 0.16979 | 1.86984 | |
Ukraine | 111 | 4.681 | 0.04412 | 0.79907 | 1.20278 | 0.67390 | 0.25123 | 0.02961 | 0.15275 | 1.57140 | |
… | … | … | … | … | … | … | … | … | … | … | … |
Sub-Saharan Africa | Somaliland region | 91 | 5.057 | 0.06161 | 0.18847 | 0.95152 | 0.43873 | 0.46582 | 0.39928 | 0.50318 | 2.11032 |
South Africa | 113 | 4.642 | 0.04585 | 0.92049 | 1.18468 | 0.27688 | 0.33207 | 0.08884 | 0.11973 | 1.71956 | |
Sudan | 118 | 4.550 | 0.06740 | 0.52107 | 1.01404 | 0.36878 | 0.10081 | 0.14660 | 0.19062 | 2.20857 | |
Swaziland | 101 | 4.867 | 0.08742 | 0.71206 | 1.07284 | 0.07566 | 0.30658 | 0.03060 | 0.18259 | 2.48676 | |
Tanzania | 146 | 3.781 | 0.05061 | 0.28520 | 1.00268 | 0.38215 | 0.32878 | 0.05747 | 0.34377 | 1.38079 | |
Togo | 158 | 2.839 | 0.06727 | 0.20868 | 0.13995 | 0.28443 | 0.36453 | 0.10731 | 0.16681 | 1.56726 | |
Uganda | 141 | 3.931 | 0.04317 | 0.21102 | 1.13299 | 0.33861 | 0.45727 | 0.07267 | 0.29066 | 1.42766 | |
Zambia | 85 | 5.129 | 0.06988 | 0.47038 | 0.91612 | 0.29924 | 0.48827 | 0.12468 | 0.19591 | 2.63430 | |
Zimbabwe | 115 | 4.610 | 0.04290 | 0.27100 | 1.03276 | 0.33475 | 0.25861 | 0.08079 | 0.18987 | 2.44191 | |
Western Europe | Austria | 13 | 7.200 | 0.03751 | 1.33723 | 1.29704 | 0.89042 | 0.62433 | 0.18676 | 0.33088 | 2.53320 |
Belgium | 19 | 6.937 | 0.03595 | 1.30782 | 1.28566 | 0.89667 | 0.58450 | 0.22540 | 0.22250 | 2.41484 | |
Cyprus | 67 | 5.689 | 0.05580 | 1.20813 | 0.89318 | 0.92356 | 0.40672 | 0.06146 | 0.30638 | 1.88931 | |
Denmark | 3 | 7.527 | 0.03328 | 1.32548 | 1.36058 | 0.87464 | 0.64938 | 0.48357 | 0.34139 | 2.49204 | |
Finland | 6 | 7.406 | 0.03140 | 1.29025 | 1.31826 | 0.88911 | 0.64169 | 0.41372 | 0.23351 | 2.61955 | |
France | 29 | 6.575 | 0.03512 | 1.27778 | 1.26038 | 0.94579 | 0.55011 | 0.20646 | 0.12332 | 2.21126 | |
Germany | 26 | 6.750 | 0.01848 | 1.32792 | 1.29937 | 0.89186 | 0.61477 | 0.21843 | 0.28214 | 2.11569 | |
Greece | 102 | 4.857 | 0.05062 | 1.15406 | 0.92933 | 0.88213 | 0.07699 | 0.01397 | 0.00000 | 1.80101 | |
Iceland | 2 | 7.561 | 0.04884 | 1.30232 | 1.40223 | 0.94784 | 0.62877 | 0.14145 | 0.43630 | 2.70201 | |
Ireland | 18 | 6.940 | 0.03676 | 1.33596 | 1.36948 | 0.89533 | 0.61777 | 0.28703 | 0.45901 | 1.97570 | |
Italy | 50 | 5.948 | 0.03914 | 1.25114 | 1.19777 | 0.95446 | 0.26236 | 0.02901 | 0.22823 | 2.02518 | |
Luxembourg | 17 | 6.946 | 0.03499 | 1.56391 | 1.21963 | 0.91894 | 0.61583 | 0.37798 | 0.28034 | 1.96961 | |
Malta | 37 | 6.302 | 0.04206 | 1.20740 | 1.30203 | 0.88721 | 0.60365 | 0.13586 | 0.51752 | 1.64880 | |
Netherlands | 7 | 7.378 | 0.02799 | 1.32944 | 1.28017 | 0.89284 | 0.61576 | 0.31814 | 0.47610 | 2.46570 | |
North Cyprus | 66 | 5.695 | 0.05635 | 1.20806 | 1.07008 | 0.92356 | 0.49027 | 0.14280 | 0.26169 | 1.59888 | |
Norway | 4 | 7.522 | 0.03880 | 1.45900 | 1.33095 | 0.88521 | 0.66973 | 0.36503 | 0.34699 | 2.46531 | |
Portugal | 88 | 5.102 | 0.04802 | 1.15991 | 1.13935 | 0.87519 | 0.51469 | 0.01078 | 0.13719 | 1.26462 | |
Spain | 36 | 6.329 | 0.03468 | 1.23011 | 1.31379 | 0.95562 | 0.45951 | 0.06398 | 0.18227 | 2.12367 | |
Sweden | 8 | 7.364 | 0.03157 | 1.33171 | 1.28907 | 0.91087 | 0.65980 | 0.43844 | 0.36262 | 2.37119 | |
Switzerland | 1 | 7.587 | 0.03411 | 1.39651 | 1.34951 | 0.94143 | 0.66557 | 0.41978 | 0.29678 | 2.51738 | |
United Kingdom | 21 | 6.867 | 0.01866 | 1.26637 | 1.28548 | 0.90943 | 0.59625 | 0.32067 | 0.51912 | 1.96994 |
158 rows × 10 columns